Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200606656> ?p ?o ?g. }
- W4200606656 endingPage "108257" @default.
- W4200606656 startingPage "108257" @default.
- W4200606656 abstract "We present a flexible, open-source Python package for the accurate simulation of the z-propagation dynamics of ultrashort optical pulses in nonlinear waveguides, especially valid for few-cycle pulses and their interaction. The simulation approach is based on unidirectional propagation equations for the analytic signal. The provided software allows to account for dispersion, attenuation, four-wave mixing processes including, e.g., third-harmonic generation, and features various models for the Raman response. The propagation equations are solved on a periodic temporal domain. For z-propagation, a selection of pseudospectral methods is available. Propagation scenarios for a custom propagation constant and initial field pulses can either be specified in terms of a HDF5 based input file format or by direct implementation using a python script. We demonstrate the functionality for a test-case for which an exact solution is available, by reproducing exemplary results documented in the scientific literature, and a complex propagation scenario involving multiple pulses. Program Title: py-fmas CPC Library link to program files: https://doi.org/10.17632/7s2cv9kjfs.1 Developer's repository link: https://github.com/omelchert/py-fmas Code Ocean capsule: https://codeocean.com/capsule/8221780 Licensing provisions: MIT Programming language: Python3 Supplementary material: Reference manual, extended user guide, and usage examples are hosted on gitHub pages under https://omelchert.github.io/py-fmas. Nature of problem: Solves for the z-propagation dynamics of spectrally broad ultrashort optical pulses in single mode nonlinear waveguides in terms of propagation models for the analytic signal of the optical field [1–3]. The implemented models include, e.g., third-harmonic generation and the Raman effect. Solution method: The initial real-valued optical field is defined on a periodic one-dimensional temporal grid and converted to the complex-valued analytic signal. z-stepping is performed via spectral methods. The software implements a selection of algorithms with fixed or adaptive stepsize, commonly used in nonlinear optics for solving nonlinear Schrödinger type equations. Additional comments including restrictions and unusual features: The range of applicability of the provided software is equivalent to that of the forward Maxwell equation [4]. For reasonably chosen initial conditions, it can be used beyond the unidirectional approximation as a bidirectional model for a complex field, allowing to describe forward and backward waves coupled through nonlinear interactions [1]. The software implements various models for the Raman response and allows to calculate spectrograms, detailing the time-frequency composition of the analytic signal. Additionally, a convenience class for analyzing propagation constants is provided. Sh. Amiranashvili, A. Demircan, Hamiltonian structure of propagation equations for ultrashort optical pulses, Phys. Rev. A 82 (2010) 013812. Sh. Amiranashvili, A. Demircan, Ultrashort Optical Pulse Propagation in terms of Analytic Signal, Adv. Opt. Technol. 2011 (2011) 989515. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, G. Steinmeyer, Rogue wave formation by accelerated solitons at an optical event horizon, Appl. Phys. B 115 (2014) 343. A. V. Husakou, J. Hermann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Phys. Rev. Lett. 87 (2001) 203901." @default.
- W4200606656 created "2021-12-31" @default.
- W4200606656 creator A5001947134 @default.
- W4200606656 creator A5007009206 @default.
- W4200606656 date "2022-04-01" @default.
- W4200606656 modified "2023-10-06" @default.
- W4200606656 title "py-fmas: A python package for ultrashort optical pulse propagation in terms of forward models for the analytic signal" @default.
- W4200606656 cites W1493472499 @default.
- W4200606656 cites W1925600286 @default.
- W4200606656 cites W1952687689 @default.
- W4200606656 cites W1966067614 @default.
- W4200606656 cites W1966639977 @default.
- W4200606656 cites W1972140872 @default.
- W4200606656 cites W1976878042 @default.
- W4200606656 cites W1977602595 @default.
- W4200606656 cites W1977960180 @default.
- W4200606656 cites W1979887549 @default.
- W4200606656 cites W1990450423 @default.
- W4200606656 cites W1991557175 @default.
- W4200606656 cites W1996031597 @default.
- W4200606656 cites W1997481739 @default.
- W4200606656 cites W2005973307 @default.
- W4200606656 cites W2006758838 @default.
- W4200606656 cites W2011301426 @default.
- W4200606656 cites W2018394116 @default.
- W4200606656 cites W2021551386 @default.
- W4200606656 cites W2023403160 @default.
- W4200606656 cites W2027319740 @default.
- W4200606656 cites W2027394216 @default.
- W4200606656 cites W2042337471 @default.
- W4200606656 cites W2050639649 @default.
- W4200606656 cites W2067943739 @default.
- W4200606656 cites W2067968095 @default.
- W4200606656 cites W2068688424 @default.
- W4200606656 cites W2069020082 @default.
- W4200606656 cites W2077623087 @default.
- W4200606656 cites W2077662383 @default.
- W4200606656 cites W2094760801 @default.
- W4200606656 cites W2097905352 @default.
- W4200606656 cites W2101105924 @default.
- W4200606656 cites W2101146650 @default.
- W4200606656 cites W2103936359 @default.
- W4200606656 cites W2105986707 @default.
- W4200606656 cites W2107143772 @default.
- W4200606656 cites W2109622017 @default.
- W4200606656 cites W2114734478 @default.
- W4200606656 cites W2115623171 @default.
- W4200606656 cites W2124724249 @default.
- W4200606656 cites W2128568462 @default.
- W4200606656 cites W2132898674 @default.
- W4200606656 cites W2157060807 @default.
- W4200606656 cites W2157076039 @default.
- W4200606656 cites W2160529651 @default.
- W4200606656 cites W2164000647 @default.
- W4200606656 cites W2165298834 @default.
- W4200606656 cites W2170385828 @default.
- W4200606656 cites W2304261318 @default.
- W4200606656 cites W2325925096 @default.
- W4200606656 cites W2332012071 @default.
- W4200606656 cites W241409986 @default.
- W4200606656 cites W266713080 @default.
- W4200606656 cites W2896502382 @default.
- W4200606656 cites W2959266168 @default.
- W4200606656 cites W3016858063 @default.
- W4200606656 cites W3080445293 @default.
- W4200606656 cites W3103145119 @default.
- W4200606656 cites W3104960154 @default.
- W4200606656 cites W2170190779 @default.
- W4200606656 doi "https://doi.org/10.1016/j.cpc.2021.108257" @default.
- W4200606656 hasPublicationYear "2022" @default.
- W4200606656 type Work @default.
- W4200606656 citedByCount "10" @default.
- W4200606656 countsByYear W42006066562022 @default.
- W4200606656 countsByYear W42006066562023 @default.
- W4200606656 crossrefType "journal-article" @default.
- W4200606656 hasAuthorship W4200606656A5001947134 @default.
- W4200606656 hasAuthorship W4200606656A5007009206 @default.
- W4200606656 hasBestOaLocation W42006066562 @default.
- W4200606656 hasConcept C121332964 @default.
- W4200606656 hasConcept C158622935 @default.
- W4200606656 hasConcept C199360897 @default.
- W4200606656 hasConcept C41008148 @default.
- W4200606656 hasConcept C459310 @default.
- W4200606656 hasConcept C519991488 @default.
- W4200606656 hasConcept C61423126 @default.
- W4200606656 hasConcept C62520636 @default.
- W4200606656 hasConceptScore W4200606656C121332964 @default.
- W4200606656 hasConceptScore W4200606656C158622935 @default.
- W4200606656 hasConceptScore W4200606656C199360897 @default.
- W4200606656 hasConceptScore W4200606656C41008148 @default.
- W4200606656 hasConceptScore W4200606656C459310 @default.
- W4200606656 hasConceptScore W4200606656C519991488 @default.
- W4200606656 hasConceptScore W4200606656C61423126 @default.
- W4200606656 hasConceptScore W4200606656C62520636 @default.
- W4200606656 hasFunder F4320320879 @default.
- W4200606656 hasLocation W42006066561 @default.
- W4200606656 hasLocation W42006066562 @default.
- W4200606656 hasOpenAccess W4200606656 @default.