Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200607543> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4200607543 abstract "In the field of deep learning, the processing of large network models on billions or even tens of billions of nodes and numerous edge types is still flawed, and the accuracy of recommendations is greatly compromised when large network embeddings are applied to recommendation systems. To solve the problem of inaccurate recommendations caused by processing deficiencies in large networks, this paper combines the attributed multiplex heterogeneous network with the attention mechanism that introduces the softsign and sigmoid function characteristics and derives a new framework SSN_GATNE-T (S represents the softsign function, SN represents the attention mechanism introduced by the Softsign function, and GATNE-T represents the transductive embeddings learning for attribute multiple heterogeneous networks). The attributed multiplex heterogeneous network can help obtain more user-item information with more attributes. No matter how many nodes and types are included in the model, our model can handle it well, and the improved attention mechanism can help annotations to obtain more useful information via a combination of the two. This can help to mine more potential information to improve the recommendation effect; in addition, the application of the softsign function in the fully connected layer of the model can better reduce the loss of potential user information, which can be used for accurate recommendation by the model. Using the Adam optimizer to optimize the model can not only make our model converge faster, but it is also very helpful for model tuning. The proposed framework SSN_GATNE-T was tested for two different types of datasets, Amazon and YouTube, using three evaluation indices, ROC-AUC (receiver operating characteristic-area under curve), PR-AUC (precision recall-area under curve) and F1 (F1-score), and found that SSN_GATNE-T improved on all three evaluation indices compared to the mainstream recommendation models currently in existence. This not only demonstrates that the framework can deal well with the shortcomings of obtaining accurate interaction information due to the presence of a large number of nodes and edge types of the embedding of large network models, but also demonstrates the effectiveness of addressing the shortcomings of large networks to improve recommendation performance. In addition, the model is also a good solution to the cold start problem." @default.
- W4200607543 created "2021-12-31" @default.
- W4200607543 date "2021-12-20" @default.
- W4200607543 modified "2023-09-27" @default.
- W4200607543 title "Figure 4: YouTube dataset evaluation results comparison line chart." @default.
- W4200607543 doi "https://doi.org/10.7717/peerj-cs.822/fig-4" @default.
- W4200607543 hasPublicationYear "2021" @default.
- W4200607543 type Work @default.
- W4200607543 citedByCount "0" @default.
- W4200607543 crossrefType "component" @default.
- W4200607543 hasBestOaLocation W42006075431 @default.
- W4200607543 hasConcept C105795698 @default.
- W4200607543 hasConcept C111472728 @default.
- W4200607543 hasConcept C119857082 @default.
- W4200607543 hasConcept C124101348 @default.
- W4200607543 hasConcept C138885662 @default.
- W4200607543 hasConcept C14036430 @default.
- W4200607543 hasConcept C154945302 @default.
- W4200607543 hasConcept C162307627 @default.
- W4200607543 hasConcept C190812933 @default.
- W4200607543 hasConcept C202444582 @default.
- W4200607543 hasConcept C33923547 @default.
- W4200607543 hasConcept C41008148 @default.
- W4200607543 hasConcept C50644808 @default.
- W4200607543 hasConcept C78458016 @default.
- W4200607543 hasConcept C81388566 @default.
- W4200607543 hasConcept C86803240 @default.
- W4200607543 hasConcept C89611455 @default.
- W4200607543 hasConcept C9652623 @default.
- W4200607543 hasConceptScore W4200607543C105795698 @default.
- W4200607543 hasConceptScore W4200607543C111472728 @default.
- W4200607543 hasConceptScore W4200607543C119857082 @default.
- W4200607543 hasConceptScore W4200607543C124101348 @default.
- W4200607543 hasConceptScore W4200607543C138885662 @default.
- W4200607543 hasConceptScore W4200607543C14036430 @default.
- W4200607543 hasConceptScore W4200607543C154945302 @default.
- W4200607543 hasConceptScore W4200607543C162307627 @default.
- W4200607543 hasConceptScore W4200607543C190812933 @default.
- W4200607543 hasConceptScore W4200607543C202444582 @default.
- W4200607543 hasConceptScore W4200607543C33923547 @default.
- W4200607543 hasConceptScore W4200607543C41008148 @default.
- W4200607543 hasConceptScore W4200607543C50644808 @default.
- W4200607543 hasConceptScore W4200607543C78458016 @default.
- W4200607543 hasConceptScore W4200607543C81388566 @default.
- W4200607543 hasConceptScore W4200607543C86803240 @default.
- W4200607543 hasConceptScore W4200607543C89611455 @default.
- W4200607543 hasConceptScore W4200607543C9652623 @default.
- W4200607543 hasLocation W42006075431 @default.
- W4200607543 hasOpenAccess W4200607543 @default.
- W4200607543 hasPrimaryLocation W42006075431 @default.
- W4200607543 hasRelatedWork W1541849392 @default.
- W4200607543 hasRelatedWork W1596920550 @default.
- W4200607543 hasRelatedWork W1968849283 @default.
- W4200607543 hasRelatedWork W1984380879 @default.
- W4200607543 hasRelatedWork W2045553408 @default.
- W4200607543 hasRelatedWork W2112277887 @default.
- W4200607543 hasRelatedWork W2338784420 @default.
- W4200607543 hasRelatedWork W2353999519 @default.
- W4200607543 hasRelatedWork W2375186741 @default.
- W4200607543 hasRelatedWork W3150619580 @default.
- W4200607543 isParatext "false" @default.
- W4200607543 isRetracted "false" @default.
- W4200607543 workType "paratext" @default.