Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200611311> ?p ?o ?g. }
- W4200611311 endingPage "e0261629" @default.
- W4200611311 startingPage "e0261629" @default.
- W4200611311 abstract "Hand, foot and mouth disease (HFMD) is an increasingly serious public health problem, and it has caused an outbreak in China every year since 2008. Predicting the incidence of HFMD and analyzing its influential factors are of great significance to its prevention. Now, machine learning has shown advantages in infectious disease models, but there are few studies on HFMD incidence based on machine learning that cover all the provinces in mainland China. In this study, we proposed two different machine learning algorithms, Random Forest and eXtreme Gradient Boosting (XGBoost), to perform our analysis and prediction. We first used Random Forest to examine the association between HFMD incidence and potential influential factors for 31 provinces in mainland China. Next, we established Random Forest and XGBoost prediction models using meteorological and social factors as the predictors. Finally, we applied our prediction models in four different regions of mainland China and evaluated the performance of them. Our results show that: 1) Meteorological factors and social factors jointly affect the incidence of HFMD in mainland China. Average temperature and population density are the two most significant influential factors; 2) Population flux has different delayed effect in affecting HFMD incidence in different regions. From a national perspective, the model using population flux data delayed for one month has better prediction performance; 3) The prediction capability of XGBoost model was better than that of Random Forest model from the overall perspective. XGBoost model is more suitable for predicting the incidence of HFMD in mainland China." @default.
- W4200611311 created "2021-12-31" @default.
- W4200611311 creator A5007414080 @default.
- W4200611311 creator A5036476029 @default.
- W4200611311 creator A5084810122 @default.
- W4200611311 date "2021-12-22" @default.
- W4200611311 modified "2023-10-18" @default.
- W4200611311 title "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost" @default.
- W4200611311 cites W1877890452 @default.
- W4200611311 cites W1971820573 @default.
- W4200611311 cites W2009560557 @default.
- W4200611311 cites W2017582744 @default.
- W4200611311 cites W2060280062 @default.
- W4200611311 cites W2104858205 @default.
- W4200611311 cites W2124063640 @default.
- W4200611311 cites W2125171812 @default.
- W4200611311 cites W2127472785 @default.
- W4200611311 cites W2130381099 @default.
- W4200611311 cites W2143536272 @default.
- W4200611311 cites W2159184116 @default.
- W4200611311 cites W2161160262 @default.
- W4200611311 cites W2163205814 @default.
- W4200611311 cites W2418706671 @default.
- W4200611311 cites W2510356240 @default.
- W4200611311 cites W2527060849 @default.
- W4200611311 cites W2527895619 @default.
- W4200611311 cites W2554831054 @default.
- W4200611311 cites W2585018908 @default.
- W4200611311 cites W2607489428 @default.
- W4200611311 cites W2744092751 @default.
- W4200611311 cites W2762668581 @default.
- W4200611311 cites W2771601403 @default.
- W4200611311 cites W2801974413 @default.
- W4200611311 cites W2808945087 @default.
- W4200611311 cites W2847020481 @default.
- W4200611311 cites W2886602112 @default.
- W4200611311 cites W2911964244 @default.
- W4200611311 cites W2949461189 @default.
- W4200611311 cites W2990218625 @default.
- W4200611311 cites W3000279467 @default.
- W4200611311 cites W3011207195 @default.
- W4200611311 cites W3017940157 @default.
- W4200611311 cites W3042669018 @default.
- W4200611311 cites W3082584658 @default.
- W4200611311 cites W3102476541 @default.
- W4200611311 cites W3108058577 @default.
- W4200611311 cites W3112254815 @default.
- W4200611311 cites W3120155159 @default.
- W4200611311 doi "https://doi.org/10.1371/journal.pone.0261629" @default.
- W4200611311 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34936688" @default.
- W4200611311 hasPublicationYear "2021" @default.
- W4200611311 type Work @default.
- W4200611311 citedByCount "13" @default.
- W4200611311 countsByYear W42006113112022 @default.
- W4200611311 countsByYear W42006113112023 @default.
- W4200611311 crossrefType "journal-article" @default.
- W4200611311 hasAuthorship W4200611311A5007414080 @default.
- W4200611311 hasAuthorship W4200611311A5036476029 @default.
- W4200611311 hasAuthorship W4200611311A5084810122 @default.
- W4200611311 hasBestOaLocation W42006113111 @default.
- W4200611311 hasConcept C105795698 @default.
- W4200611311 hasConcept C107029721 @default.
- W4200611311 hasConcept C116675565 @default.
- W4200611311 hasConcept C119857082 @default.
- W4200611311 hasConcept C144024400 @default.
- W4200611311 hasConcept C149923435 @default.
- W4200611311 hasConcept C159047783 @default.
- W4200611311 hasConcept C166957645 @default.
- W4200611311 hasConcept C169258074 @default.
- W4200611311 hasConcept C191935318 @default.
- W4200611311 hasConcept C205649164 @default.
- W4200611311 hasConcept C2524010 @default.
- W4200611311 hasConcept C2779070877 @default.
- W4200611311 hasConcept C2908647359 @default.
- W4200611311 hasConcept C33923547 @default.
- W4200611311 hasConcept C41008148 @default.
- W4200611311 hasConcept C61511704 @default.
- W4200611311 hasConcept C71924100 @default.
- W4200611311 hasConcept C89128539 @default.
- W4200611311 hasConcept C99454951 @default.
- W4200611311 hasConceptScore W4200611311C105795698 @default.
- W4200611311 hasConceptScore W4200611311C107029721 @default.
- W4200611311 hasConceptScore W4200611311C116675565 @default.
- W4200611311 hasConceptScore W4200611311C119857082 @default.
- W4200611311 hasConceptScore W4200611311C144024400 @default.
- W4200611311 hasConceptScore W4200611311C149923435 @default.
- W4200611311 hasConceptScore W4200611311C159047783 @default.
- W4200611311 hasConceptScore W4200611311C166957645 @default.
- W4200611311 hasConceptScore W4200611311C169258074 @default.
- W4200611311 hasConceptScore W4200611311C191935318 @default.
- W4200611311 hasConceptScore W4200611311C205649164 @default.
- W4200611311 hasConceptScore W4200611311C2524010 @default.
- W4200611311 hasConceptScore W4200611311C2779070877 @default.
- W4200611311 hasConceptScore W4200611311C2908647359 @default.
- W4200611311 hasConceptScore W4200611311C33923547 @default.
- W4200611311 hasConceptScore W4200611311C41008148 @default.
- W4200611311 hasConceptScore W4200611311C61511704 @default.
- W4200611311 hasConceptScore W4200611311C71924100 @default.