Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200614805> ?p ?o ?g. }
- W4200614805 endingPage "106590" @default.
- W4200614805 startingPage "106590" @default.
- W4200614805 abstract "Alterations of the expression of a variety of genes have been reported in patients with schizophrenia (SCZ). Moreover, machine learning (ML) analysis of gene expression microarray data has shown promising preliminary results in the study of SCZ. Our objective was to evaluate the performance of ML in classifying SCZ cases and controls based on gene expression microarray data from the dorsolateral prefrontal cortex.We apply a state-of-the-art ML algorithm (XGBoost) to train and evaluate a classification model using 201 SCZ cases and 278 controls. We utilized 10-fold cross-validation for model selection, and a held-out testing set to evaluate the model. The performance metric utilizes to evaluate classification performance was the area under the receiver-operator characteristics curve (AUC).We report an average AUC on 10-fold cross-validation of 0.76 and an AUC of 0.76 on testing data, not used during training. Analysis of the rolling balanced classification accuracy from high to low prediction confidence levels showed that the most certain subset of predictions ranged between 80-90%. The ML model utilized 182 gene expression probes. Further improvement to classification performance was observed when applying an automated ML strategy on the 182 features, which achieved an AUC of 0.79 on the same testing data. We found literature evidence linking all of the top ten ML ranked genes to SCZ. Furthermore, we leveraged information from the full set of microarray gene expressions available via univariate differential gene expression analysis. We then prioritized differentially expressed gene sets using the piano gene set analysis package. We augmented the ranking of the prioritized gene sets with genes from the complex multivariate ML model using hypergeometric tests to identify more robust gene sets. We identified two significant Gene Ontology molecular function gene sets: oxidoreductase activity, acting on the CH-NH2 group of donors and integrin binding. Lastly, we present candidate treatments for SCZ based on findings from our study CONCLUSIONS: Overall, we observed above-chance performance from ML classification of SCZ cases and controls based on brain gene expression microarray data, and found that ML analysis of gene expressions could further our understanding of the pathophysiology of SCZ and help identify novel treatments." @default.
- W4200614805 created "2021-12-31" @default.
- W4200614805 creator A5009365890 @default.
- W4200614805 creator A5048926739 @default.
- W4200614805 creator A5058039708 @default.
- W4200614805 creator A5083015408 @default.
- W4200614805 date "2022-02-01" @default.
- W4200614805 modified "2023-09-26" @default.
- W4200614805 title "Transcriptomics and machine learning to advance schizophrenia genetics: A case-control study using post-mortem brain data" @default.
- W4200614805 cites W1969060266 @default.
- W4200614805 cites W1969808205 @default.
- W4200614805 cites W1979743168 @default.
- W4200614805 cites W1983226055 @default.
- W4200614805 cites W1985438653 @default.
- W4200614805 cites W1989747504 @default.
- W4200614805 cites W1992668142 @default.
- W4200614805 cites W2000546494 @default.
- W4200614805 cites W2008020964 @default.
- W4200614805 cites W2020206369 @default.
- W4200614805 cites W2021703037 @default.
- W4200614805 cites W2033141663 @default.
- W4200614805 cites W2049032075 @default.
- W4200614805 cites W2051158121 @default.
- W4200614805 cites W2053725214 @default.
- W4200614805 cites W2053941511 @default.
- W4200614805 cites W2075037447 @default.
- W4200614805 cites W2078521023 @default.
- W4200614805 cites W2084577318 @default.
- W4200614805 cites W2101357408 @default.
- W4200614805 cites W2103017472 @default.
- W4200614805 cites W2130410032 @default.
- W4200614805 cites W2136728739 @default.
- W4200614805 cites W2146577564 @default.
- W4200614805 cites W2150787963 @default.
- W4200614805 cites W2167778120 @default.
- W4200614805 cites W2177870565 @default.
- W4200614805 cites W2534266625 @default.
- W4200614805 cites W2556274377 @default.
- W4200614805 cites W2563122328 @default.
- W4200614805 cites W2576683119 @default.
- W4200614805 cites W2737589253 @default.
- W4200614805 cites W2751739125 @default.
- W4200614805 cites W2768044068 @default.
- W4200614805 cites W2791374406 @default.
- W4200614805 cites W2791419018 @default.
- W4200614805 cites W2799290723 @default.
- W4200614805 cites W2800193051 @default.
- W4200614805 cites W2904884010 @default.
- W4200614805 cites W2926974277 @default.
- W4200614805 cites W2944401420 @default.
- W4200614805 cites W2946294290 @default.
- W4200614805 cites W2965054109 @default.
- W4200614805 cites W3012452196 @default.
- W4200614805 cites W3112600195 @default.
- W4200614805 doi "https://doi.org/10.1016/j.cmpb.2021.106590" @default.
- W4200614805 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34954633" @default.
- W4200614805 hasPublicationYear "2022" @default.
- W4200614805 type Work @default.
- W4200614805 citedByCount "1" @default.
- W4200614805 countsByYear W42006148052022 @default.
- W4200614805 crossrefType "journal-article" @default.
- W4200614805 hasAuthorship W4200614805A5009365890 @default.
- W4200614805 hasAuthorship W4200614805A5048926739 @default.
- W4200614805 hasAuthorship W4200614805A5058039708 @default.
- W4200614805 hasAuthorship W4200614805A5083015408 @default.
- W4200614805 hasConcept C104317684 @default.
- W4200614805 hasConcept C119857082 @default.
- W4200614805 hasConcept C12267149 @default.
- W4200614805 hasConcept C124101348 @default.
- W4200614805 hasConcept C150194340 @default.
- W4200614805 hasConcept C154945302 @default.
- W4200614805 hasConcept C161584116 @default.
- W4200614805 hasConcept C199163554 @default.
- W4200614805 hasConcept C41008148 @default.
- W4200614805 hasConcept C54355233 @default.
- W4200614805 hasConcept C58471807 @default.
- W4200614805 hasConcept C58489278 @default.
- W4200614805 hasConcept C70721500 @default.
- W4200614805 hasConcept C8415881 @default.
- W4200614805 hasConcept C86803240 @default.
- W4200614805 hasConceptScore W4200614805C104317684 @default.
- W4200614805 hasConceptScore W4200614805C119857082 @default.
- W4200614805 hasConceptScore W4200614805C12267149 @default.
- W4200614805 hasConceptScore W4200614805C124101348 @default.
- W4200614805 hasConceptScore W4200614805C150194340 @default.
- W4200614805 hasConceptScore W4200614805C154945302 @default.
- W4200614805 hasConceptScore W4200614805C161584116 @default.
- W4200614805 hasConceptScore W4200614805C199163554 @default.
- W4200614805 hasConceptScore W4200614805C41008148 @default.
- W4200614805 hasConceptScore W4200614805C54355233 @default.
- W4200614805 hasConceptScore W4200614805C58471807 @default.
- W4200614805 hasConceptScore W4200614805C58489278 @default.
- W4200614805 hasConceptScore W4200614805C70721500 @default.
- W4200614805 hasConceptScore W4200614805C8415881 @default.
- W4200614805 hasConceptScore W4200614805C86803240 @default.
- W4200614805 hasLocation W42006148051 @default.
- W4200614805 hasLocation W42006148052 @default.
- W4200614805 hasOpenAccess W4200614805 @default.