Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200615537> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4200615537 endingPage "101521" @default.
- W4200615537 startingPage "101521" @default.
- W4200615537 abstract "The traditional methods of analyzing stomatal traits are mostly manual observation and measurement. These methods are time-consuming, labor-intensive, and inefficient. Some methods have been proposed for the automatic recognition and counting of stomata, however most of those methods could not complete the automatic measurement of stomata parameters at the same time. Some non-deep learning methods could automatically measure the parameters of stomata, but they could not complete the automatic recognition and detection of stomata. In this paper, a deep learning-based method was proposed for automatically identifying, counting and measuring stomata of maize (Zea mays L.) leaves at the same time. An improved YOLO (You Only Look Once) deep learning model was proposed to identify stomata of maize leaves automatically, and an entropy rate superpixel algorithm was used for the accurate measurement of stomatal parameters. According to the characteristics of the stomata images data set, the network structure of YOLOv5 was modified, which greatly reduced the training time without affecting the recognition performance. The predictor in YOLO deep learning model was optimized, which reduced the false detection rate. At the same time, the 16-fold and 32-fold down-sampling layers were simplified according to the characteristics of stomatal objects, which improved the recognition efficiency. Experimental results showed that the recognition precision of the improved YOLO deep learning model reached 95.3% on the maize leaves stomatal data set, and the average accuracy of parameter measurement reached 90%. The proposed method could fully automatically complete the recognition, counting and measurement of stomata of plants, which can help agricultural scientists and botanists to conduct large-scale researches of stomatal morphology, structure and physiology, as well as the researches combined with genetic analysis or molecular-level analysis." @default.
- W4200615537 created "2021-12-31" @default.
- W4200615537 creator A5005723276 @default.
- W4200615537 creator A5010854518 @default.
- W4200615537 creator A5037147238 @default.
- W4200615537 creator A5048171321 @default.
- W4200615537 date "2022-05-01" @default.
- W4200615537 modified "2023-10-14" @default.
- W4200615537 title "Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate superpixel algorithm" @default.
- W4200615537 cites W1975309494 @default.
- W4200615537 cites W2003060733 @default.
- W4200615537 cites W2019182222 @default.
- W4200615537 cites W2104125540 @default.
- W4200615537 cites W2109255472 @default.
- W4200615537 cites W2508822515 @default.
- W4200615537 cites W2532269402 @default.
- W4200615537 cites W2767150407 @default.
- W4200615537 cites W2828817210 @default.
- W4200615537 cites W2918904102 @default.
- W4200615537 cites W2936773439 @default.
- W4200615537 cites W2943957125 @default.
- W4200615537 cites W2945710659 @default.
- W4200615537 cites W2947304841 @default.
- W4200615537 cites W2954940836 @default.
- W4200615537 cites W2955806662 @default.
- W4200615537 cites W3006905062 @default.
- W4200615537 cites W3045368143 @default.
- W4200615537 cites W3080255489 @default.
- W4200615537 cites W3082115252 @default.
- W4200615537 cites W3087172717 @default.
- W4200615537 cites W3088750230 @default.
- W4200615537 cites W3117103593 @default.
- W4200615537 cites W3153763215 @default.
- W4200615537 cites W3159324452 @default.
- W4200615537 cites W3186787792 @default.
- W4200615537 cites W639708223 @default.
- W4200615537 doi "https://doi.org/10.1016/j.ecoinf.2021.101521" @default.
- W4200615537 hasPublicationYear "2022" @default.
- W4200615537 type Work @default.
- W4200615537 citedByCount "7" @default.
- W4200615537 countsByYear W42006155372022 @default.
- W4200615537 countsByYear W42006155372023 @default.
- W4200615537 crossrefType "journal-article" @default.
- W4200615537 hasAuthorship W4200615537A5005723276 @default.
- W4200615537 hasAuthorship W4200615537A5010854518 @default.
- W4200615537 hasAuthorship W4200615537A5037147238 @default.
- W4200615537 hasAuthorship W4200615537A5048171321 @default.
- W4200615537 hasConcept C106301342 @default.
- W4200615537 hasConcept C108583219 @default.
- W4200615537 hasConcept C11413529 @default.
- W4200615537 hasConcept C119857082 @default.
- W4200615537 hasConcept C121332964 @default.
- W4200615537 hasConcept C153180895 @default.
- W4200615537 hasConcept C154945302 @default.
- W4200615537 hasConcept C41008148 @default.
- W4200615537 hasConcept C62520636 @default.
- W4200615537 hasConceptScore W4200615537C106301342 @default.
- W4200615537 hasConceptScore W4200615537C108583219 @default.
- W4200615537 hasConceptScore W4200615537C11413529 @default.
- W4200615537 hasConceptScore W4200615537C119857082 @default.
- W4200615537 hasConceptScore W4200615537C121332964 @default.
- W4200615537 hasConceptScore W4200615537C153180895 @default.
- W4200615537 hasConceptScore W4200615537C154945302 @default.
- W4200615537 hasConceptScore W4200615537C41008148 @default.
- W4200615537 hasConceptScore W4200615537C62520636 @default.
- W4200615537 hasFunder F4320321001 @default.
- W4200615537 hasFunder F4320322878 @default.
- W4200615537 hasFunder F4320323845 @default.
- W4200615537 hasLocation W42006155371 @default.
- W4200615537 hasOpenAccess W4200615537 @default.
- W4200615537 hasPrimaryLocation W42006155371 @default.
- W4200615537 hasRelatedWork W2051487156 @default.
- W4200615537 hasRelatedWork W2052122378 @default.
- W4200615537 hasRelatedWork W2053286651 @default.
- W4200615537 hasRelatedWork W2073681303 @default.
- W4200615537 hasRelatedWork W2317200988 @default.
- W4200615537 hasRelatedWork W2544423928 @default.
- W4200615537 hasRelatedWork W2611989081 @default.
- W4200615537 hasRelatedWork W4375867731 @default.
- W4200615537 hasRelatedWork W4380075502 @default.
- W4200615537 hasRelatedWork W2181743346 @default.
- W4200615537 hasVolume "68" @default.
- W4200615537 isParatext "false" @default.
- W4200615537 isRetracted "false" @default.
- W4200615537 workType "article" @default.