Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200617823> ?p ?o ?g. }
- W4200617823 endingPage "108733" @default.
- W4200617823 startingPage "108733" @default.
- W4200617823 abstract "• Propose a sparsity-enhanced POGS model to extract weak periodic impulses. • Proposed model can enhance the SWAG of features and retain weak feature information. • An evaluation indicator is constructed to automatically select model parameters. • Experimental results verify the validity and superiority of the proposed method. The fault symptom of rolling bearings is usually characterized by transient impulses formed at equal intervals, but the impulse signal is easily affected by noise and harmonic interferences, which increases the difficulty of extracting impulse features. In order to realize the effective extraction of weak periodic impulses under strong noise, this paper constructs a non-convex penalty function based on elastic net and L p norm, and proposes a sparsity-enhanced periodic overlapping group shrinkage (POGS) method to detect rolling bearing faults. In the proposed sparse model, the internal function of the non-convex penalty function adopts the period-guided elastic net group sparse constraint, and the envelope autocorrelation function is used to dynamically update the period prior information to improve the extraction accuracy of highly correlated features within the group. Meanwhile, the non-convex L p norm is introduced into the penalty function to constrain the sparsity of the overall variables, so as to guide the sparsity within and across groups (SWAG) of faults features while maintaining the weak impulse amplitudes. A comprehensive evaluation indicator is constructed as the fitness function of the moth-flame optimization (MFO) algorithm to realize automatic selection of model parameters. On the basis of the majorization-minimization (MM) algorithm and the improved soft threshold algorithm, the process of solving the objective function of the proposed model is given, and the performance of the proposed method is analyzed. The analysis results of the experimental data of rolling bearings suggest that in comparison with some existing sparse denoising methods, the proposed method exhibits better performance in the extraction of weak periodic impulses." @default.
- W4200617823 created "2021-12-31" @default.
- W4200617823 creator A5000460407 @default.
- W4200617823 creator A5018945216 @default.
- W4200617823 creator A5024385262 @default.
- W4200617823 creator A5037906805 @default.
- W4200617823 creator A5049801163 @default.
- W4200617823 date "2022-04-01" @default.
- W4200617823 modified "2023-10-17" @default.
- W4200617823 title "A sparsity-enhanced periodic OGS model for weak feature extraction of rolling bearing faults" @default.
- W4200617823 cites W1948271374 @default.
- W4200617823 cites W1964511482 @default.
- W4200617823 cites W1971521993 @default.
- W4200617823 cites W1975377467 @default.
- W4200617823 cites W1976709621 @default.
- W4200617823 cites W1984516393 @default.
- W4200617823 cites W2004544971 @default.
- W4200617823 cites W2010977676 @default.
- W4200617823 cites W2016970698 @default.
- W4200617823 cites W2040657720 @default.
- W4200617823 cites W2041891835 @default.
- W4200617823 cites W2064324093 @default.
- W4200617823 cites W2069962935 @default.
- W4200617823 cites W2103559027 @default.
- W4200617823 cites W2119862467 @default.
- W4200617823 cites W2122688057 @default.
- W4200617823 cites W2122825543 @default.
- W4200617823 cites W2138019504 @default.
- W4200617823 cites W2196381116 @default.
- W4200617823 cites W2558784134 @default.
- W4200617823 cites W2568819930 @default.
- W4200617823 cites W2585416310 @default.
- W4200617823 cites W2605456446 @default.
- W4200617823 cites W2761196906 @default.
- W4200617823 cites W2765259557 @default.
- W4200617823 cites W2784141614 @default.
- W4200617823 cites W2791968124 @default.
- W4200617823 cites W2804568838 @default.
- W4200617823 cites W2805662770 @default.
- W4200617823 cites W290462016 @default.
- W4200617823 cites W2909048348 @default.
- W4200617823 cites W2909067387 @default.
- W4200617823 cites W2917077885 @default.
- W4200617823 cites W2971980670 @default.
- W4200617823 cites W2972042451 @default.
- W4200617823 cites W2994699906 @default.
- W4200617823 cites W2998830245 @default.
- W4200617823 cites W2998982962 @default.
- W4200617823 cites W3004640153 @default.
- W4200617823 cites W3005144796 @default.
- W4200617823 cites W3006944565 @default.
- W4200617823 cites W3007528456 @default.
- W4200617823 cites W3011239283 @default.
- W4200617823 cites W3012134396 @default.
- W4200617823 cites W3040442963 @default.
- W4200617823 cites W3066823240 @default.
- W4200617823 cites W4250955649 @default.
- W4200617823 cites W4256504953 @default.
- W4200617823 cites W883434633 @default.
- W4200617823 doi "https://doi.org/10.1016/j.ymssp.2021.108733" @default.
- W4200617823 hasPublicationYear "2022" @default.
- W4200617823 type Work @default.
- W4200617823 citedByCount "9" @default.
- W4200617823 countsByYear W42006178232022 @default.
- W4200617823 countsByYear W42006178232023 @default.
- W4200617823 crossrefType "journal-article" @default.
- W4200617823 hasAuthorship W4200617823A5000460407 @default.
- W4200617823 hasAuthorship W4200617823A5018945216 @default.
- W4200617823 hasAuthorship W4200617823A5024385262 @default.
- W4200617823 hasAuthorship W4200617823A5037906805 @default.
- W4200617823 hasAuthorship W4200617823A5049801163 @default.
- W4200617823 hasConcept C112680207 @default.
- W4200617823 hasConcept C11413529 @default.
- W4200617823 hasConcept C121332964 @default.
- W4200617823 hasConcept C126255220 @default.
- W4200617823 hasConcept C153180895 @default.
- W4200617823 hasConcept C154945302 @default.
- W4200617823 hasConcept C157972887 @default.
- W4200617823 hasConcept C2524010 @default.
- W4200617823 hasConcept C2775924081 @default.
- W4200617823 hasConcept C33923547 @default.
- W4200617823 hasConcept C41008148 @default.
- W4200617823 hasConcept C47446073 @default.
- W4200617823 hasConcept C6180225 @default.
- W4200617823 hasConcept C62520636 @default.
- W4200617823 hasConcept C70836080 @default.
- W4200617823 hasConceptScore W4200617823C112680207 @default.
- W4200617823 hasConceptScore W4200617823C11413529 @default.
- W4200617823 hasConceptScore W4200617823C121332964 @default.
- W4200617823 hasConceptScore W4200617823C126255220 @default.
- W4200617823 hasConceptScore W4200617823C153180895 @default.
- W4200617823 hasConceptScore W4200617823C154945302 @default.
- W4200617823 hasConceptScore W4200617823C157972887 @default.
- W4200617823 hasConceptScore W4200617823C2524010 @default.
- W4200617823 hasConceptScore W4200617823C2775924081 @default.
- W4200617823 hasConceptScore W4200617823C33923547 @default.
- W4200617823 hasConceptScore W4200617823C41008148 @default.
- W4200617823 hasConceptScore W4200617823C47446073 @default.