Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200620650> ?p ?o ?g. }
- W4200620650 endingPage "553" @default.
- W4200620650 startingPage "543" @default.
- W4200620650 abstract "The co-occurrence of symptoms may result from the direct interactions between these symptoms and the symptoms can be treated as a system. In addition, subject-specific risk factors (eg, genetic variants, age) can also exert external influence on the system. In this work, we develop a covariate-dependent conditional Gaussian graphical model to obtain personalized symptom networks. The strengths of network connections are modeled as a function of covariates to capture the heterogeneity among individuals and subgroups of individuals. We assess the performance of our proposed method by simulation studies and an application to a large natural history study of Huntington's disease to investigate the networks of symptoms in multiple clinical domains (motor, cognitive, psychiatric) and identify important brain imaging biomarkers that are associated with the connections. We show that the symptoms in the same clinical domain interact more often with each other than cross domains and the psychiatric subnetwork is the densest network. We validate the findings using the subjects' symptom measurements at follow-up visits." @default.
- W4200620650 created "2021-12-31" @default.
- W4200620650 creator A5018126363 @default.
- W4200620650 creator A5063135878 @default.
- W4200620650 creator A5087798220 @default.
- W4200620650 date "2021-12-05" @default.
- W4200620650 modified "2023-10-15" @default.
- W4200620650 title "Conditional Gaussian graphical model for estimating personalized disease symptom networks" @default.
- W4200620650 cites W1502338185 @default.
- W4200620650 cites W1874853784 @default.
- W4200620650 cites W1972627370 @default.
- W4200620650 cites W1985730575 @default.
- W4200620650 cites W1987371344 @default.
- W4200620650 cites W2012872347 @default.
- W4200620650 cites W2018747370 @default.
- W4200620650 cites W2021105624 @default.
- W4200620650 cites W2025983204 @default.
- W4200620650 cites W2032259302 @default.
- W4200620650 cites W2055526664 @default.
- W4200620650 cites W2064794182 @default.
- W4200620650 cites W2078320135 @default.
- W4200620650 cites W2098028843 @default.
- W4200620650 cites W2110684391 @default.
- W4200620650 cites W2127195835 @default.
- W4200620650 cites W2127514208 @default.
- W4200620650 cites W2132555912 @default.
- W4200620650 cites W2136468386 @default.
- W4200620650 cites W2142897908 @default.
- W4200620650 cites W2148289138 @default.
- W4200620650 cites W2156809536 @default.
- W4200620650 cites W2164675092 @default.
- W4200620650 cites W2165009258 @default.
- W4200620650 cites W2166224121 @default.
- W4200620650 cites W2168322240 @default.
- W4200620650 cites W2325742619 @default.
- W4200620650 cites W2462099493 @default.
- W4200620650 cites W2537472522 @default.
- W4200620650 cites W2582550385 @default.
- W4200620650 cites W2601254520 @default.
- W4200620650 cites W2601774270 @default.
- W4200620650 cites W2946854915 @default.
- W4200620650 cites W2949427672 @default.
- W4200620650 cites W2962989581 @default.
- W4200620650 cites W2996085050 @default.
- W4200620650 cites W3098834468 @default.
- W4200620650 doi "https://doi.org/10.1002/sim.9274" @default.
- W4200620650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34866214" @default.
- W4200620650 hasPublicationYear "2021" @default.
- W4200620650 type Work @default.
- W4200620650 citedByCount "1" @default.
- W4200620650 countsByYear W42006206502023 @default.
- W4200620650 crossrefType "journal-article" @default.
- W4200620650 hasAuthorship W4200620650A5018126363 @default.
- W4200620650 hasAuthorship W4200620650A5063135878 @default.
- W4200620650 hasAuthorship W4200620650A5087798220 @default.
- W4200620650 hasBestOaLocation W42006206502 @default.
- W4200620650 hasConcept C118552586 @default.
- W4200620650 hasConcept C119043178 @default.
- W4200620650 hasConcept C119857082 @default.
- W4200620650 hasConcept C121332964 @default.
- W4200620650 hasConcept C142724271 @default.
- W4200620650 hasConcept C154945302 @default.
- W4200620650 hasConcept C155846161 @default.
- W4200620650 hasConcept C163716315 @default.
- W4200620650 hasConcept C169900460 @default.
- W4200620650 hasConcept C2779134260 @default.
- W4200620650 hasConcept C2780186347 @default.
- W4200620650 hasConcept C32220436 @default.
- W4200620650 hasConcept C38652104 @default.
- W4200620650 hasConcept C41008148 @default.
- W4200620650 hasConcept C58693492 @default.
- W4200620650 hasConcept C60644358 @default.
- W4200620650 hasConcept C62520636 @default.
- W4200620650 hasConcept C71924100 @default.
- W4200620650 hasConcept C86803240 @default.
- W4200620650 hasConceptScore W4200620650C118552586 @default.
- W4200620650 hasConceptScore W4200620650C119043178 @default.
- W4200620650 hasConceptScore W4200620650C119857082 @default.
- W4200620650 hasConceptScore W4200620650C121332964 @default.
- W4200620650 hasConceptScore W4200620650C142724271 @default.
- W4200620650 hasConceptScore W4200620650C154945302 @default.
- W4200620650 hasConceptScore W4200620650C155846161 @default.
- W4200620650 hasConceptScore W4200620650C163716315 @default.
- W4200620650 hasConceptScore W4200620650C169900460 @default.
- W4200620650 hasConceptScore W4200620650C2779134260 @default.
- W4200620650 hasConceptScore W4200620650C2780186347 @default.
- W4200620650 hasConceptScore W4200620650C32220436 @default.
- W4200620650 hasConceptScore W4200620650C38652104 @default.
- W4200620650 hasConceptScore W4200620650C41008148 @default.
- W4200620650 hasConceptScore W4200620650C58693492 @default.
- W4200620650 hasConceptScore W4200620650C60644358 @default.
- W4200620650 hasConceptScore W4200620650C62520636 @default.
- W4200620650 hasConceptScore W4200620650C71924100 @default.
- W4200620650 hasConceptScore W4200620650C86803240 @default.
- W4200620650 hasFunder F4320306080 @default.
- W4200620650 hasFunder F4320335787 @default.
- W4200620650 hasIssue "3" @default.
- W4200620650 hasLocation W42006206501 @default.