Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200631402> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4200631402 abstract "In the article we focus on large-dimensional matrix factor models and propose estimators of factor loading matrices and factor score matrix from the perspective of minimizing least squares objective function. The resultant estimators turns out to be equivalent to the corresponding projected estimators in Yu et al. (2021), which enjoys the nice properties of reducing the magnitudes of the idiosyncratic error components and thereby increasing the signal-to-noise ratio. We derive the convergence rate of the theoretical minimizers under sub-Gaussian tails, instead of the one-step iteration estimators by Yu et al. (2021). Motivated by the least squares formulation, we further consider a robust method for estimating large-dimensional matrix factor model by utilizing Huber Loss function. Theoretically, we derive the convergence rates of the robust estimators of the factor loading matrices under finite fourth moment conditions. We also propose an iterative procedure to estimate the pair of row and column factor numbers robustly. We conduct extensive numerical studies to investigate the empirical performance of the proposed robust methods relative to the sate-of-the-art ones, which show the proposed ones perform robustly and much better than the existing ones when data are heavy-tailed while perform almost the same (comparably) with the projected estimators when data are light-tailed, and as a result can be used as a safe replacement of the existing ones. An application to a Fama-French financial portfolios dataset illustrates its empirical usefulness." @default.
- W4200631402 created "2021-12-31" @default.
- W4200631402 creator A5012364593 @default.
- W4200631402 creator A5017895484 @default.
- W4200631402 creator A5018147628 @default.
- W4200631402 creator A5018885393 @default.
- W4200631402 creator A5069612179 @default.
- W4200631402 date "2021-12-08" @default.
- W4200631402 modified "2023-09-29" @default.
- W4200631402 title "Statistical Inference for Large-dimensional Matrix Factor Model from Least Squares and Huber Loss Points of View" @default.
- W4200631402 hasPublicationYear "2021" @default.
- W4200631402 type Work @default.
- W4200631402 citedByCount "0" @default.
- W4200631402 crossrefType "posted-content" @default.
- W4200631402 hasAuthorship W4200631402A5012364593 @default.
- W4200631402 hasAuthorship W4200631402A5017895484 @default.
- W4200631402 hasAuthorship W4200631402A5018147628 @default.
- W4200631402 hasAuthorship W4200631402A5018885393 @default.
- W4200631402 hasAuthorship W4200631402A5069612179 @default.
- W4200631402 hasBestOaLocation W42006314021 @default.
- W4200631402 hasConcept C105795698 @default.
- W4200631402 hasConcept C106487976 @default.
- W4200631402 hasConcept C10879293 @default.
- W4200631402 hasConcept C11413529 @default.
- W4200631402 hasConcept C121332964 @default.
- W4200631402 hasConcept C126255220 @default.
- W4200631402 hasConcept C14036430 @default.
- W4200631402 hasConcept C143791395 @default.
- W4200631402 hasConcept C159985019 @default.
- W4200631402 hasConcept C162324750 @default.
- W4200631402 hasConcept C163716315 @default.
- W4200631402 hasConcept C179254644 @default.
- W4200631402 hasConcept C185429906 @default.
- W4200631402 hasConcept C192562407 @default.
- W4200631402 hasConcept C2777303404 @default.
- W4200631402 hasConcept C28826006 @default.
- W4200631402 hasConcept C33923547 @default.
- W4200631402 hasConcept C41008148 @default.
- W4200631402 hasConcept C50522688 @default.
- W4200631402 hasConcept C62520636 @default.
- W4200631402 hasConcept C74650414 @default.
- W4200631402 hasConcept C78458016 @default.
- W4200631402 hasConcept C86803240 @default.
- W4200631402 hasConcept C9936470 @default.
- W4200631402 hasConceptScore W4200631402C105795698 @default.
- W4200631402 hasConceptScore W4200631402C106487976 @default.
- W4200631402 hasConceptScore W4200631402C10879293 @default.
- W4200631402 hasConceptScore W4200631402C11413529 @default.
- W4200631402 hasConceptScore W4200631402C121332964 @default.
- W4200631402 hasConceptScore W4200631402C126255220 @default.
- W4200631402 hasConceptScore W4200631402C14036430 @default.
- W4200631402 hasConceptScore W4200631402C143791395 @default.
- W4200631402 hasConceptScore W4200631402C159985019 @default.
- W4200631402 hasConceptScore W4200631402C162324750 @default.
- W4200631402 hasConceptScore W4200631402C163716315 @default.
- W4200631402 hasConceptScore W4200631402C179254644 @default.
- W4200631402 hasConceptScore W4200631402C185429906 @default.
- W4200631402 hasConceptScore W4200631402C192562407 @default.
- W4200631402 hasConceptScore W4200631402C2777303404 @default.
- W4200631402 hasConceptScore W4200631402C28826006 @default.
- W4200631402 hasConceptScore W4200631402C33923547 @default.
- W4200631402 hasConceptScore W4200631402C41008148 @default.
- W4200631402 hasConceptScore W4200631402C50522688 @default.
- W4200631402 hasConceptScore W4200631402C62520636 @default.
- W4200631402 hasConceptScore W4200631402C74650414 @default.
- W4200631402 hasConceptScore W4200631402C78458016 @default.
- W4200631402 hasConceptScore W4200631402C86803240 @default.
- W4200631402 hasConceptScore W4200631402C9936470 @default.
- W4200631402 hasLocation W42006314021 @default.
- W4200631402 hasOpenAccess W4200631402 @default.
- W4200631402 hasPrimaryLocation W42006314021 @default.
- W4200631402 hasRelatedWork W10284890 @default.
- W4200631402 hasRelatedWork W12730994 @default.
- W4200631402 hasRelatedWork W14441327 @default.
- W4200631402 hasRelatedWork W15229059 @default.
- W4200631402 hasRelatedWork W3161171 @default.
- W4200631402 hasRelatedWork W5180863 @default.
- W4200631402 hasRelatedWork W5857843 @default.
- W4200631402 hasRelatedWork W7319666 @default.
- W4200631402 hasRelatedWork W829417 @default.
- W4200631402 hasRelatedWork W11648009 @default.
- W4200631402 isParatext "false" @default.
- W4200631402 isRetracted "false" @default.
- W4200631402 workType "article" @default.