Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200632988> ?p ?o ?g. }
- W4200632988 endingPage "523" @default.
- W4200632988 startingPage "491" @default.
- W4200632988 abstract "Multipartite entity resolution aims at integrating records from multiple datasets into one entity. We derive a mathematical formulation for a general class of record linkage problems in multipartite entity resolution across many datasets as a combinatorial optimization problem known as the multidimensional assignment problem. As a motivation for our approach, we illustrate the advantage of multipartite entity resolution over sequential bipartite matching. Because the optimization problem is NP-hard, we apply two heuristic procedures, a Greedy algorithm and very large scale neighborhood search, to solve the assignment problem and find the most likely matching of records from multiple datasets into a single entity. We evaluate and compare the performance of these algorithms and their modifications on synthetically generated data. We perform computational experiments to compare performance of recent heuristic, the very large-scale neighborhood search, with a Greedy algorithm, another heuristic for the MAP, as well as with two versions of genetic algorithm, a general metaheuristic. Importantly, we perform experiments to compare two alternative methods of re-starting the search for the former heuristic, specifically a random-sampling multi-start and a deterministic design-based multi-start. We find evidence that design-based multi-start can be more efficient as the size of databases grow large. In addition, we show that very large scale search, especially its multi-start version, outperforms simple Greedy heuristic. Hybridization of Greedy search with very large scale neighborhood search improves the performance. Using multi-start with as few as three additional runs of very large scale search offers some improvement in the performance of the very large scale search procedure. Last, we propose an approach to evaluating complexity of the very large-scale neighborhood search." @default.
- W4200632988 created "2021-12-31" @default.
- W4200632988 creator A5001088424 @default.
- W4200632988 creator A5054940160 @default.
- W4200632988 creator A5056056607 @default.
- W4200632988 date "2022-03-03" @default.
- W4200632988 modified "2023-10-16" @default.
- W4200632988 title "Multidimensional Assignment Problem for Multipartite Entity Resolution" @default.
- W4200632988 cites W1182931012 @default.
- W4200632988 cites W1555062732 @default.
- W4200632988 cites W1592570595 @default.
- W4200632988 cites W186326261 @default.
- W4200632988 cites W1964432498 @default.
- W4200632988 cites W1970825336 @default.
- W4200632988 cites W1974960304 @default.
- W4200632988 cites W1981590391 @default.
- W4200632988 cites W1987765704 @default.
- W4200632988 cites W2000732156 @default.
- W4200632988 cites W2002091899 @default.
- W4200632988 cites W2012738417 @default.
- W4200632988 cites W2015391636 @default.
- W4200632988 cites W2017983883 @default.
- W4200632988 cites W2019511671 @default.
- W4200632988 cites W2020032845 @default.
- W4200632988 cites W2026147624 @default.
- W4200632988 cites W2042454345 @default.
- W4200632988 cites W2050028957 @default.
- W4200632988 cites W2051473806 @default.
- W4200632988 cites W2056748234 @default.
- W4200632988 cites W2082483165 @default.
- W4200632988 cites W2083924594 @default.
- W4200632988 cites W2088653780 @default.
- W4200632988 cites W2107966677 @default.
- W4200632988 cites W2113105081 @default.
- W4200632988 cites W2123561513 @default.
- W4200632988 cites W2132525028 @default.
- W4200632988 cites W2153531029 @default.
- W4200632988 cites W2171220849 @default.
- W4200632988 cites W2237063244 @default.
- W4200632988 cites W2241660235 @default.
- W4200632988 cites W2247394048 @default.
- W4200632988 cites W2294321905 @default.
- W4200632988 cites W2339803498 @default.
- W4200632988 cites W2399361902 @default.
- W4200632988 cites W2401610261 @default.
- W4200632988 cites W2405642844 @default.
- W4200632988 cites W2427930862 @default.
- W4200632988 cites W2462352030 @default.
- W4200632988 cites W2476974423 @default.
- W4200632988 cites W2492590231 @default.
- W4200632988 cites W2754424884 @default.
- W4200632988 cites W2771042211 @default.
- W4200632988 cites W2775175850 @default.
- W4200632988 cites W2963063567 @default.
- W4200632988 cites W3103502041 @default.
- W4200632988 cites W3146259567 @default.
- W4200632988 cites W74351427 @default.
- W4200632988 doi "https://doi.org/10.1007/s10898-022-01141-3" @default.
- W4200632988 hasPublicationYear "2022" @default.
- W4200632988 type Work @default.
- W4200632988 citedByCount "2" @default.
- W4200632988 countsByYear W42006329882023 @default.
- W4200632988 crossrefType "journal-article" @default.
- W4200632988 hasAuthorship W4200632988A5001088424 @default.
- W4200632988 hasAuthorship W4200632988A5054940160 @default.
- W4200632988 hasAuthorship W4200632988A5056056607 @default.
- W4200632988 hasBestOaLocation W42006329882 @default.
- W4200632988 hasConcept C105795698 @default.
- W4200632988 hasConcept C11413529 @default.
- W4200632988 hasConcept C121040770 @default.
- W4200632988 hasConcept C121332964 @default.
- W4200632988 hasConcept C125583679 @default.
- W4200632988 hasConcept C126221529 @default.
- W4200632988 hasConcept C126255220 @default.
- W4200632988 hasConcept C139979381 @default.
- W4200632988 hasConcept C165064840 @default.
- W4200632988 hasConcept C166733315 @default.
- W4200632988 hasConcept C173801870 @default.
- W4200632988 hasConcept C19889080 @default.
- W4200632988 hasConcept C2778755073 @default.
- W4200632988 hasConcept C33923547 @default.
- W4200632988 hasConcept C41008148 @default.
- W4200632988 hasConcept C51823790 @default.
- W4200632988 hasConcept C62520636 @default.
- W4200632988 hasConcept C84114770 @default.
- W4200632988 hasConceptScore W4200632988C105795698 @default.
- W4200632988 hasConceptScore W4200632988C11413529 @default.
- W4200632988 hasConceptScore W4200632988C121040770 @default.
- W4200632988 hasConceptScore W4200632988C121332964 @default.
- W4200632988 hasConceptScore W4200632988C125583679 @default.
- W4200632988 hasConceptScore W4200632988C126221529 @default.
- W4200632988 hasConceptScore W4200632988C126255220 @default.
- W4200632988 hasConceptScore W4200632988C139979381 @default.
- W4200632988 hasConceptScore W4200632988C165064840 @default.
- W4200632988 hasConceptScore W4200632988C166733315 @default.
- W4200632988 hasConceptScore W4200632988C173801870 @default.
- W4200632988 hasConceptScore W4200632988C19889080 @default.
- W4200632988 hasConceptScore W4200632988C2778755073 @default.