Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200633183> ?p ?o ?g. }
- W4200633183 endingPage "1579" @default.
- W4200633183 startingPage "1568" @default.
- W4200633183 abstract "ABSTRACT We explore the use of deep learning to infer the temperature of the intergalactic medium from the transmitted flux in the high-redshift Ly α forest. We train neural networks on sets of simulated spectra from redshift z = 2–3 outputs of cosmological hydrodynamic simulations, including high-temperature regions added in post-processing to approximate bubbles heated by He ii reionization. We evaluate how well the trained networks are able to reconstruct the temperature from the effect of Doppler broadening in the simulated input Ly α forest absorption spectra. We find that for spectra with high resolution (10 $, {rm km}, {rm s}^{-1}$ pixel) and moderate signal-to-noise ratio (20–50), the neural network is able to reconstruct the intergalactic medium temperature smoothed on scales of $sim 6 , h^{-1}, {rm Mpc}$ quite well. Concentrating on discontinuities, we find that high-temperature regions of width $25 , h^{-1}, {rm Mpc}$ and temperature $20, 000$ K can be fairly easily detected and characterized. We show an example where multiple sightlines are combined to yield tomographic images of hot bubbles. Deep learning techniques may be useful in this way to help us understand the complex temperature structure of the intergalactic medium around the time of helium reionization." @default.
- W4200633183 created "2021-12-31" @default.
- W4200633183 creator A5019827103 @default.
- W4200633183 creator A5027511820 @default.
- W4200633183 creator A5031195671 @default.
- W4200633183 date "2022-06-29" @default.
- W4200633183 modified "2023-10-06" @default.
- W4200633183 title "Deep forest: neural network reconstruction of intergalactic medium temperature" @default.
- W4200633183 cites W1481345939 @default.
- W4200633183 cites W1832321402 @default.
- W4200633183 cites W1881590345 @default.
- W4200633183 cites W1919170971 @default.
- W4200633183 cites W1960065697 @default.
- W4200633183 cites W1965376766 @default.
- W4200633183 cites W1976956985 @default.
- W4200633183 cites W2017431276 @default.
- W4200633183 cites W2018044755 @default.
- W4200633183 cites W2018950554 @default.
- W4200633183 cites W2037624693 @default.
- W4200633183 cites W2050504337 @default.
- W4200633183 cites W2061988021 @default.
- W4200633183 cites W2072594529 @default.
- W4200633183 cites W2092618688 @default.
- W4200633183 cites W2099681644 @default.
- W4200633183 cites W2130992240 @default.
- W4200633183 cites W2148155488 @default.
- W4200633183 cites W2258895601 @default.
- W4200633183 cites W2597163733 @default.
- W4200633183 cites W2599720466 @default.
- W4200633183 cites W2767526854 @default.
- W4200633183 cites W2808302137 @default.
- W4200633183 cites W2835063354 @default.
- W4200633183 cites W2888143963 @default.
- W4200633183 cites W2919115771 @default.
- W4200633183 cites W2921352493 @default.
- W4200633183 cites W2941790284 @default.
- W4200633183 cites W2968857122 @default.
- W4200633183 cites W2998904498 @default.
- W4200633183 cites W2999771842 @default.
- W4200633183 cites W3003988923 @default.
- W4200633183 cites W3006238995 @default.
- W4200633183 cites W3007320440 @default.
- W4200633183 cites W3048766320 @default.
- W4200633183 cites W3082384166 @default.
- W4200633183 cites W3088606019 @default.
- W4200633183 cites W3092583314 @default.
- W4200633183 cites W3097983063 @default.
- W4200633183 cites W3098076155 @default.
- W4200633183 cites W3098202100 @default.
- W4200633183 cites W3098221464 @default.
- W4200633183 cites W3098382518 @default.
- W4200633183 cites W3098408485 @default.
- W4200633183 cites W3098466129 @default.
- W4200633183 cites W3098654032 @default.
- W4200633183 cites W3099765798 @default.
- W4200633183 cites W3100915083 @default.
- W4200633183 cites W3104760767 @default.
- W4200633183 cites W3199165652 @default.
- W4200633183 cites W3200200763 @default.
- W4200633183 cites W3207381739 @default.
- W4200633183 cites W3211732184 @default.
- W4200633183 cites W4283820638 @default.
- W4200633183 cites W639809281 @default.
- W4200633183 cites W3047417866 @default.
- W4200633183 doi "https://doi.org/10.1093/mnras/stac1786" @default.
- W4200633183 hasPublicationYear "2022" @default.
- W4200633183 type Work @default.
- W4200633183 citedByCount "0" @default.
- W4200633183 crossrefType "journal-article" @default.
- W4200633183 hasAuthorship W4200633183A5019827103 @default.
- W4200633183 hasAuthorship W4200633183A5027511820 @default.
- W4200633183 hasAuthorship W4200633183A5031195671 @default.
- W4200633183 hasBestOaLocation W42006331832 @default.
- W4200633183 hasConcept C115961682 @default.
- W4200633183 hasConcept C121332964 @default.
- W4200633183 hasConcept C1276947 @default.
- W4200633183 hasConcept C134306372 @default.
- W4200633183 hasConcept C13565188 @default.
- W4200633183 hasConcept C150846664 @default.
- W4200633183 hasConcept C154945302 @default.
- W4200633183 hasConcept C15627037 @default.
- W4200633183 hasConcept C2993745857 @default.
- W4200633183 hasConcept C33024259 @default.
- W4200633183 hasConcept C33923547 @default.
- W4200633183 hasConcept C41008148 @default.
- W4200633183 hasConcept C44870925 @default.
- W4200633183 hasConcept C4839761 @default.
- W4200633183 hasConcept C55047584 @default.
- W4200633183 hasConcept C69672822 @default.
- W4200633183 hasConcept C93849054 @default.
- W4200633183 hasConcept C98444146 @default.
- W4200633183 hasConcept C99498987 @default.
- W4200633183 hasConceptScore W4200633183C115961682 @default.
- W4200633183 hasConceptScore W4200633183C121332964 @default.
- W4200633183 hasConceptScore W4200633183C1276947 @default.
- W4200633183 hasConceptScore W4200633183C134306372 @default.
- W4200633183 hasConceptScore W4200633183C13565188 @default.
- W4200633183 hasConceptScore W4200633183C150846664 @default.