Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200633382> ?p ?o ?g. }
- W4200633382 endingPage "104898" @default.
- W4200633382 startingPage "104898" @default.
- W4200633382 abstract "Here, we report measurements of detailed dynamic cohesive properties (DCPs) beyond the dynamic fracture toughness of a bicontinuously nanostructured copolymer, polyurea, under an extremely loading rate, from deep-learning analyses of a dynamic big-data-generating experiment. We first describe a new Dynamic Line-Image Shearing Interferometer (DL-ISI), which uses a streak camera to record optical fringes of displacement-gradient vs time profile along a line on sample's rear surface. This system enables us to detect crack initiation and growth processes in plate-impact experiments. Then, we present a convolutional neural network (CNN) based deep-learning framework, trained by extensive finite-element simulations, that inversely determines the accurate DCPs from the DL-ISI fringe images. For the measurements, plate-impact experiments were performed on a set of samples with a mid-plane crack. A Conditional Generative Adversarial Networks (cGAN) was employed first to reconstruct missing DL-ISI fringes with recorded partial DL-ISI fringes. Then, the CNN and a correlation method were applied to the fully reconstructed fringes to get the dynamic fracture toughness, 12.1kJ/m^2, cohesive strength, 302 MPa, and maximum cohesive separation, 80.5 um, within 0.4%, 2.7%, and 2.2% differences, respectively. For the first time, the DCPs of polyurea have been successfully obtained by the DL-ISI with the pre-trained CNN and correlation analyses of cGAN-reconstructed data sets. The dynamic cohesive strength is found to be nearly three times higher than the dynamic-failure-initiation strength. The high dynamic fracture toughness is found to stem from both high dynamic cohesive strength and high ductility of the dynamic cohesive separation." @default.
- W4200633382 created "2021-12-31" @default.
- W4200633382 creator A5025399238 @default.
- W4200633382 creator A5047301386 @default.
- W4200633382 creator A5085159256 @default.
- W4200633382 creator A5088675045 @default.
- W4200633382 date "2022-07-01" @default.
- W4200633382 modified "2023-10-14" @default.
- W4200633382 title "Dynamic fracture of a bicontinuously nanostructured copolymer: A deep-learning analysis of big-data-generating experiment" @default.
- W4200633382 cites W1510184633 @default.
- W4200633382 cites W1901129140 @default.
- W4200633382 cites W1970241160 @default.
- W4200633382 cites W1970995889 @default.
- W4200633382 cites W1980588733 @default.
- W4200633382 cites W1981074760 @default.
- W4200633382 cites W1982234142 @default.
- W4200633382 cites W1986529925 @default.
- W4200633382 cites W1990834492 @default.
- W4200633382 cites W1992924568 @default.
- W4200633382 cites W1997547737 @default.
- W4200633382 cites W2015019784 @default.
- W4200633382 cites W2017783528 @default.
- W4200633382 cites W2024492567 @default.
- W4200633382 cites W2024742100 @default.
- W4200633382 cites W2031354198 @default.
- W4200633382 cites W2034506927 @default.
- W4200633382 cites W2040397401 @default.
- W4200633382 cites W2044018111 @default.
- W4200633382 cites W2050830709 @default.
- W4200633382 cites W2054146536 @default.
- W4200633382 cites W2056160762 @default.
- W4200633382 cites W2085014028 @default.
- W4200633382 cites W2149679967 @default.
- W4200633382 cites W2152286491 @default.
- W4200633382 cites W2171200767 @default.
- W4200633382 cites W2747038510 @default.
- W4200633382 cites W2883583109 @default.
- W4200633382 cites W2919115771 @default.
- W4200633382 cites W2919958648 @default.
- W4200633382 cites W2963073614 @default.
- W4200633382 cites W3012417314 @default.
- W4200633382 cites W3027941858 @default.
- W4200633382 cites W3121733470 @default.
- W4200633382 cites W3133945275 @default.
- W4200633382 cites W3145017754 @default.
- W4200633382 cites W3163993681 @default.
- W4200633382 cites W3166589044 @default.
- W4200633382 cites W3181663648 @default.
- W4200633382 cites W4213199992 @default.
- W4200633382 cites W4214668084 @default.
- W4200633382 doi "https://doi.org/10.1016/j.jmps.2022.104898" @default.
- W4200633382 hasPublicationYear "2022" @default.
- W4200633382 type Work @default.
- W4200633382 citedByCount "9" @default.
- W4200633382 countsByYear W42006333822022 @default.
- W4200633382 countsByYear W42006333822023 @default.
- W4200633382 crossrefType "journal-article" @default.
- W4200633382 hasAuthorship W4200633382A5025399238 @default.
- W4200633382 hasAuthorship W4200633382A5047301386 @default.
- W4200633382 hasAuthorship W4200633382A5085159256 @default.
- W4200633382 hasAuthorship W4200633382A5088675045 @default.
- W4200633382 hasBestOaLocation W42006333821 @default.
- W4200633382 hasConcept C108583219 @default.
- W4200633382 hasConcept C115635565 @default.
- W4200633382 hasConcept C152279782 @default.
- W4200633382 hasConcept C154945302 @default.
- W4200633382 hasConcept C159985019 @default.
- W4200633382 hasConcept C192562407 @default.
- W4200633382 hasConcept C2781113870 @default.
- W4200633382 hasConcept C2781448156 @default.
- W4200633382 hasConcept C41008148 @default.
- W4200633382 hasConcept C43369102 @default.
- W4200633382 hasConcept C59085676 @default.
- W4200633382 hasConcept C81363708 @default.
- W4200633382 hasConcept C97549433 @default.
- W4200633382 hasConceptScore W4200633382C108583219 @default.
- W4200633382 hasConceptScore W4200633382C115635565 @default.
- W4200633382 hasConceptScore W4200633382C152279782 @default.
- W4200633382 hasConceptScore W4200633382C154945302 @default.
- W4200633382 hasConceptScore W4200633382C159985019 @default.
- W4200633382 hasConceptScore W4200633382C192562407 @default.
- W4200633382 hasConceptScore W4200633382C2781113870 @default.
- W4200633382 hasConceptScore W4200633382C2781448156 @default.
- W4200633382 hasConceptScore W4200633382C41008148 @default.
- W4200633382 hasConceptScore W4200633382C43369102 @default.
- W4200633382 hasConceptScore W4200633382C59085676 @default.
- W4200633382 hasConceptScore W4200633382C81363708 @default.
- W4200633382 hasConceptScore W4200633382C97549433 @default.
- W4200633382 hasFunder F4320332923 @default.
- W4200633382 hasFunder F4320337345 @default.
- W4200633382 hasLocation W42006333821 @default.
- W4200633382 hasLocation W42006333822 @default.
- W4200633382 hasOpenAccess W4200633382 @default.
- W4200633382 hasPrimaryLocation W42006333821 @default.
- W4200633382 hasRelatedWork W2035295604 @default.
- W4200633382 hasRelatedWork W2515310281 @default.
- W4200633382 hasRelatedWork W2626731276 @default.
- W4200633382 hasRelatedWork W2780451069 @default.