Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200633804> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4200633804 endingPage "100563" @default.
- W4200633804 startingPage "100563" @default.
- W4200633804 abstract "Event processing is the cornerstone of the dynamic and responsive Internet of Things (IoT). Recent approaches in this area are based on representational state transfer (REST) principles, which allow event processing tasks to be placed at any device that follows the same principles. However, the tasks should be properly distributed among edge devices to ensure fair resources utilization and guarantee seamless execution. This article investigates the use of deep learning to fairly distribute the tasks. An attention-based neural network model is proposed to generate efficient load balancing solutions under different scenarios. The proposed model is based on the Transformer and Pointer Network architectures, and is trained by an advantage actor-critic reinforcement learning algorithm. The model is designed to scale to the number of event processing tasks and the number of edge devices, with no need for hyperparameters re-tuning or even retraining. Extensive experimental results show that the proposed model outperforms conventional heuristics in many key performance indicators. The generic design and the obtained results show that the proposed model can potentially be applied to several other load balancing problem variations, which makes the proposal an attractive option to be used in real-world scenarios due to its scalability and efficiency." @default.
- W4200633804 created "2021-12-31" @default.
- W4200633804 creator A5030583738 @default.
- W4200633804 creator A5037355713 @default.
- W4200633804 creator A5071091397 @default.
- W4200633804 date "2022-08-01" @default.
- W4200633804 modified "2023-09-26" @default.
- W4200633804 title "Attention-based model and deep reinforcement learning for distribution of event processing tasks" @default.
- W4200633804 cites W2064675550 @default.
- W4200633804 cites W2075372670 @default.
- W4200633804 cites W2119717200 @default.
- W4200633804 cites W2145339207 @default.
- W4200633804 cites W2257979135 @default.
- W4200633804 cites W2885631546 @default.
- W4200633804 cites W2918891759 @default.
- W4200633804 cites W2963334314 @default.
- W4200633804 cites W3017275226 @default.
- W4200633804 cites W3017324615 @default.
- W4200633804 cites W3036600287 @default.
- W4200633804 cites W3100789280 @default.
- W4200633804 cites W3118210634 @default.
- W4200633804 cites W3134179774 @default.
- W4200633804 cites W3170113470 @default.
- W4200633804 doi "https://doi.org/10.1016/j.iot.2022.100563" @default.
- W4200633804 hasPublicationYear "2022" @default.
- W4200633804 type Work @default.
- W4200633804 citedByCount "2" @default.
- W4200633804 countsByYear W42006338042023 @default.
- W4200633804 crossrefType "journal-article" @default.
- W4200633804 hasAuthorship W4200633804A5030583738 @default.
- W4200633804 hasAuthorship W4200633804A5037355713 @default.
- W4200633804 hasAuthorship W4200633804A5071091397 @default.
- W4200633804 hasBestOaLocation W42006338041 @default.
- W4200633804 hasConcept C111919701 @default.
- W4200633804 hasConcept C119857082 @default.
- W4200633804 hasConcept C120314980 @default.
- W4200633804 hasConcept C121332964 @default.
- W4200633804 hasConcept C127705205 @default.
- W4200633804 hasConcept C138236772 @default.
- W4200633804 hasConcept C144133560 @default.
- W4200633804 hasConcept C154945302 @default.
- W4200633804 hasConcept C155202549 @default.
- W4200633804 hasConcept C165801399 @default.
- W4200633804 hasConcept C2778712577 @default.
- W4200633804 hasConcept C41008148 @default.
- W4200633804 hasConcept C48044578 @default.
- W4200633804 hasConcept C62520636 @default.
- W4200633804 hasConcept C66322947 @default.
- W4200633804 hasConcept C77088390 @default.
- W4200633804 hasConcept C79974875 @default.
- W4200633804 hasConcept C97541855 @default.
- W4200633804 hasConceptScore W4200633804C111919701 @default.
- W4200633804 hasConceptScore W4200633804C119857082 @default.
- W4200633804 hasConceptScore W4200633804C120314980 @default.
- W4200633804 hasConceptScore W4200633804C121332964 @default.
- W4200633804 hasConceptScore W4200633804C127705205 @default.
- W4200633804 hasConceptScore W4200633804C138236772 @default.
- W4200633804 hasConceptScore W4200633804C144133560 @default.
- W4200633804 hasConceptScore W4200633804C154945302 @default.
- W4200633804 hasConceptScore W4200633804C155202549 @default.
- W4200633804 hasConceptScore W4200633804C165801399 @default.
- W4200633804 hasConceptScore W4200633804C2778712577 @default.
- W4200633804 hasConceptScore W4200633804C41008148 @default.
- W4200633804 hasConceptScore W4200633804C48044578 @default.
- W4200633804 hasConceptScore W4200633804C62520636 @default.
- W4200633804 hasConceptScore W4200633804C66322947 @default.
- W4200633804 hasConceptScore W4200633804C77088390 @default.
- W4200633804 hasConceptScore W4200633804C79974875 @default.
- W4200633804 hasConceptScore W4200633804C97541855 @default.
- W4200633804 hasLocation W42006338041 @default.
- W4200633804 hasLocation W42006338042 @default.
- W4200633804 hasLocation W42006338043 @default.
- W4200633804 hasOpenAccess W4200633804 @default.
- W4200633804 hasPrimaryLocation W42006338041 @default.
- W4200633804 hasRelatedWork W1779844473 @default.
- W4200633804 hasRelatedWork W1992741870 @default.
- W4200633804 hasRelatedWork W2364921833 @default.
- W4200633804 hasRelatedWork W2380023786 @default.
- W4200633804 hasRelatedWork W2385146268 @default.
- W4200633804 hasRelatedWork W2546696010 @default.
- W4200633804 hasRelatedWork W2795803694 @default.
- W4200633804 hasRelatedWork W4234210828 @default.
- W4200633804 hasRelatedWork W4312815336 @default.
- W4200633804 hasRelatedWork W4319083788 @default.
- W4200633804 hasVolume "19" @default.
- W4200633804 isParatext "false" @default.
- W4200633804 isRetracted "false" @default.
- W4200633804 workType "article" @default.