Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200635228> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4200635228 abstract "Computational fluid dynamics (CFD) simulations are broadly applied in engineering and physics. A standard description of fluid dynamics requires solving the Navier-Stokes (N-S) equations in different flow regimes. However, applications of CFD simulations are computationally-limited by the availability, speed, and parallelism of high-performance computing. To improve computational efficiency, machine learning techniques have been used to create accelerated data-driven approximations for CFD. A majority of such approaches rely on large labeled CFD datasets that are expensive to obtain at the scale necessary to build robust data-driven models. We develop a weakly-supervised approach to solve the steady-state N-S equations under various boundary conditions, using a multi-channel input with boundary and geometric conditions. We achieve state-of-the-art results without any labeled simulation data, but using a custom data-driven and physics-informed loss function by using and small-scale solutions to prime the model to solve the N-S equations. To improve the resolution and predictability, we train stacked models of increasing complexity generating the numerical solutions for N-S equations. Without expensive computations, our model achieves high predictability with a variety of obstacles and boundary conditions. Given its high flexibility, the model can generate a solution on a 64 x 64 domain within 5 ms on a regular desktop computer which is 1000 times faster than a regular CFD solver. Translation of interactive CFD simulation on local consumer computing hardware enables new applications in real-time predictions on the internet of things devices where data transfer is prohibitive and can increase the scale, speed, and computational cost of boundary-value fluid problems." @default.
- W4200635228 created "2021-12-31" @default.
- W4200635228 creator A5036712029 @default.
- W4200635228 creator A5037641781 @default.
- W4200635228 creator A5058134275 @default.
- W4200635228 creator A5066313637 @default.
- W4200635228 date "2021-12-13" @default.
- W4200635228 modified "2023-09-23" @default.
- W4200635228 title "Stacked Generative Machine Learning Models for Fast Approximations of Steady-State Navier-Stokes Equations" @default.
- W4200635228 doi "https://doi.org/10.48550/arxiv.2112.06419" @default.
- W4200635228 hasPublicationYear "2021" @default.
- W4200635228 type Work @default.
- W4200635228 citedByCount "0" @default.
- W4200635228 crossrefType "posted-content" @default.
- W4200635228 hasAuthorship W4200635228A5036712029 @default.
- W4200635228 hasAuthorship W4200635228A5037641781 @default.
- W4200635228 hasAuthorship W4200635228A5058134275 @default.
- W4200635228 hasAuthorship W4200635228A5066313637 @default.
- W4200635228 hasBestOaLocation W42006352281 @default.
- W4200635228 hasConcept C105795698 @default.
- W4200635228 hasConcept C11413529 @default.
- W4200635228 hasConcept C121332964 @default.
- W4200635228 hasConcept C134306372 @default.
- W4200635228 hasConcept C1633027 @default.
- W4200635228 hasConcept C182310444 @default.
- W4200635228 hasConcept C197640229 @default.
- W4200635228 hasConcept C199360897 @default.
- W4200635228 hasConcept C2778770139 @default.
- W4200635228 hasConcept C2781278361 @default.
- W4200635228 hasConcept C33923547 @default.
- W4200635228 hasConcept C41008148 @default.
- W4200635228 hasConcept C45374587 @default.
- W4200635228 hasConcept C459310 @default.
- W4200635228 hasConcept C57879066 @default.
- W4200635228 hasConcept C84655787 @default.
- W4200635228 hasConceptScore W4200635228C105795698 @default.
- W4200635228 hasConceptScore W4200635228C11413529 @default.
- W4200635228 hasConceptScore W4200635228C121332964 @default.
- W4200635228 hasConceptScore W4200635228C134306372 @default.
- W4200635228 hasConceptScore W4200635228C1633027 @default.
- W4200635228 hasConceptScore W4200635228C182310444 @default.
- W4200635228 hasConceptScore W4200635228C197640229 @default.
- W4200635228 hasConceptScore W4200635228C199360897 @default.
- W4200635228 hasConceptScore W4200635228C2778770139 @default.
- W4200635228 hasConceptScore W4200635228C2781278361 @default.
- W4200635228 hasConceptScore W4200635228C33923547 @default.
- W4200635228 hasConceptScore W4200635228C41008148 @default.
- W4200635228 hasConceptScore W4200635228C45374587 @default.
- W4200635228 hasConceptScore W4200635228C459310 @default.
- W4200635228 hasConceptScore W4200635228C57879066 @default.
- W4200635228 hasConceptScore W4200635228C84655787 @default.
- W4200635228 hasLocation W42006352281 @default.
- W4200635228 hasLocation W42006352282 @default.
- W4200635228 hasOpenAccess W4200635228 @default.
- W4200635228 hasPrimaryLocation W42006352281 @default.
- W4200635228 hasRelatedWork W2040521822 @default.
- W4200635228 hasRelatedWork W2257847510 @default.
- W4200635228 hasRelatedWork W2301275550 @default.
- W4200635228 hasRelatedWork W2347467742 @default.
- W4200635228 hasRelatedWork W2503713896 @default.
- W4200635228 hasRelatedWork W2555230829 @default.
- W4200635228 hasRelatedWork W3005655184 @default.
- W4200635228 hasRelatedWork W3119508870 @default.
- W4200635228 hasRelatedWork W3121897000 @default.
- W4200635228 hasRelatedWork W4313201791 @default.
- W4200635228 isParatext "false" @default.
- W4200635228 isRetracted "false" @default.
- W4200635228 workType "article" @default.