Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200635639> ?p ?o ?g. }
- W4200635639 endingPage "90" @default.
- W4200635639 startingPage "79" @default.
- W4200635639 abstract "Deep learning has shown astonishing performance in accelerated magnetic resonance imaging (MRI). Most state-of-the-art deep learning reconstructions adopt the powerful convolutional neural network and perform 2D convolution since many magnetic resonance images or their corresponding k-space are in 2D. In this work, we present a new approach that explores the 1D convolution, making the deep network much easier to be trained and generalized. We further integrate the 1D convolution into the proposed deep network, named as One-dimensional Deep Low-rank and Sparse network (ODLS), which unrolls the iteration procedure of a low-rank and sparse reconstruction model. Extensive results on in vivo knee and brain datasets demonstrate that, the proposed ODLS is very suitable for the case of limited training subjects and provides improved reconstruction performance than state-of-the-art methods both visually and quantitatively. Additionally, ODLS also shows nice robustness to different undersampling scenarios and some mismatches between the training and test data. In summary, our work demonstrates that the 1D deep learning scheme is memory-efficient and robust in fast MRI." @default.
- W4200635639 created "2021-12-31" @default.
- W4200635639 creator A5001758799 @default.
- W4200635639 creator A5033326056 @default.
- W4200635639 creator A5060182809 @default.
- W4200635639 creator A5062309027 @default.
- W4200635639 creator A5063573457 @default.
- W4200635639 creator A5078821760 @default.
- W4200635639 creator A5091365015 @default.
- W4200635639 date "2023-01-01" @default.
- W4200635639 modified "2023-10-16" @default.
- W4200635639 title "One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI" @default.
- W4200635639 cites W1497904071 @default.
- W4200635639 cites W1758598986 @default.
- W4200635639 cites W19536506 @default.
- W4200635639 cites W1956034203 @default.
- W4200635639 cites W1999795676 @default.
- W4200635639 cites W2003271614 @default.
- W4200635639 cites W2008257035 @default.
- W4200635639 cites W2033162169 @default.
- W4200635639 cites W2047544187 @default.
- W4200635639 cites W2079929986 @default.
- W4200635639 cites W2101675075 @default.
- W4200635639 cites W2106263593 @default.
- W4200635639 cites W2107882641 @default.
- W4200635639 cites W2111388536 @default.
- W4200635639 cites W2117649283 @default.
- W4200635639 cites W2133665775 @default.
- W4200635639 cites W2141168890 @default.
- W4200635639 cites W2156739854 @default.
- W4200635639 cites W2159122269 @default.
- W4200635639 cites W2165142794 @default.
- W4200635639 cites W2168668658 @default.
- W4200635639 cites W2168903001 @default.
- W4200635639 cites W2442117232 @default.
- W4200635639 cites W2601784259 @default.
- W4200635639 cites W2604388535 @default.
- W4200635639 cites W2611467245 @default.
- W4200635639 cites W2777802649 @default.
- W4200635639 cites W2795380527 @default.
- W4200635639 cites W2798559986 @default.
- W4200635639 cites W2799761118 @default.
- W4200635639 cites W2889995282 @default.
- W4200635639 cites W2902695296 @default.
- W4200635639 cites W2902719825 @default.
- W4200635639 cites W2912449124 @default.
- W4200635639 cites W2962903101 @default.
- W4200635639 cites W2963334250 @default.
- W4200635639 cites W2963682501 @default.
- W4200635639 cites W2963793388 @default.
- W4200635639 cites W2980116310 @default.
- W4200635639 cites W2995799149 @default.
- W4200635639 cites W3001319253 @default.
- W4200635639 cites W3012906128 @default.
- W4200635639 cites W3014756686 @default.
- W4200635639 cites W3034223847 @default.
- W4200635639 cites W3044508608 @default.
- W4200635639 cites W3047706622 @default.
- W4200635639 cites W3100017730 @default.
- W4200635639 cites W3100730608 @default.
- W4200635639 cites W3129082682 @default.
- W4200635639 cites W3151039536 @default.
- W4200635639 cites W3156002264 @default.
- W4200635639 cites W3179726428 @default.
- W4200635639 cites W3179813600 @default.
- W4200635639 cites W3183777577 @default.
- W4200635639 cites W4210422447 @default.
- W4200635639 cites W4226199202 @default.
- W4200635639 cites W4249760698 @default.
- W4200635639 doi "https://doi.org/10.1109/tmi.2022.3203312" @default.
- W4200635639 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36044484" @default.
- W4200635639 hasPublicationYear "2023" @default.
- W4200635639 type Work @default.
- W4200635639 citedByCount "8" @default.
- W4200635639 countsByYear W42006356392023 @default.
- W4200635639 crossrefType "journal-article" @default.
- W4200635639 hasAuthorship W4200635639A5001758799 @default.
- W4200635639 hasAuthorship W4200635639A5033326056 @default.
- W4200635639 hasAuthorship W4200635639A5060182809 @default.
- W4200635639 hasAuthorship W4200635639A5062309027 @default.
- W4200635639 hasAuthorship W4200635639A5063573457 @default.
- W4200635639 hasAuthorship W4200635639A5078821760 @default.
- W4200635639 hasAuthorship W4200635639A5091365015 @default.
- W4200635639 hasBestOaLocation W42006356392 @default.
- W4200635639 hasConcept C104317684 @default.
- W4200635639 hasConcept C108583219 @default.
- W4200635639 hasConcept C11413529 @default.
- W4200635639 hasConcept C119857082 @default.
- W4200635639 hasConcept C136536468 @default.
- W4200635639 hasConcept C153180895 @default.
- W4200635639 hasConcept C154945302 @default.
- W4200635639 hasConcept C185592680 @default.
- W4200635639 hasConcept C41008148 @default.
- W4200635639 hasConcept C45347329 @default.
- W4200635639 hasConcept C50644808 @default.
- W4200635639 hasConcept C55493867 @default.
- W4200635639 hasConcept C63479239 @default.
- W4200635639 hasConcept C81363708 @default.