Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205087657> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4205087657 abstract "<sec> <title>BACKGROUND</title> The COVID-19 pandemic has affected the health, economic, and social fabric of many nations worldwide. Identification of individual-level susceptibility factors may help people in identifying and managing their emotional, psychological, and social well-being. </sec> <sec> <title>OBJECTIVE</title> This study is focused on learning a ranked list of factors that could indicate a predisposition to a mental disorder during the COVID-19 pandemic. </sec> <sec> <title>METHODS</title> In this study, we have used a survey of 17,764 adults in the United States from different age groups, genders, and socioeconomic statuses. Through initial statistical analysis and Bayesian network inference, we have identified key factors affecting mental health during the COVID-19 pandemic. Integrating Bayesian networks with classical machine learning approaches led to effective modeling of the level of mental health prevalence. </sec> <sec> <title>RESULTS</title> Overall, females were more stressed than males, and people in the age group 18-29 years were more vulnerable to anxiety than other age groups. Using the Bayesian network model, we found that people with a chronic mental illness were more prone to mental disorders during the COVID-19 pandemic. The new realities of working from home; homeschooling; and lack of communication with family, friends, and neighbors induces mental pressure. Financial assistance from social security helps in reducing mental stress during the COVID-19–generated economic crises. Finally, using supervised machine learning models, we predicted the most mentally vulnerable people with ~80% accuracy. </sec> <sec> <title>CONCLUSIONS</title> Multiple factors such as social isolation, digital communication, and working and schooling from home were identified as factors of mental illness during the COVID-19 pandemic. Regular in-person communication with friends and family, a healthy social life, and social security were key factors, and taking care of people with a history of mental disease appears to be even more important during this time. </sec>" @default.
- W4205087657 created "2022-01-26" @default.
- W4205087657 creator A5000733841 @default.
- W4205087657 creator A5022103648 @default.
- W4205087657 creator A5045360539 @default.
- W4205087657 creator A5057325002 @default.
- W4205087657 creator A5071626917 @default.
- W4205087657 date "2020-10-17" @default.
- W4205087657 modified "2023-10-18" @default.
- W4205087657 title "Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study (Preprint)" @default.
- W4205087657 cites W2266456207 @default.
- W4205087657 doi "https://doi.org/10.2196/preprints.25097" @default.
- W4205087657 hasPublicationYear "2020" @default.
- W4205087657 type Work @default.
- W4205087657 citedByCount "2" @default.
- W4205087657 countsByYear W42050876572021 @default.
- W4205087657 crossrefType "posted-content" @default.
- W4205087657 hasAuthorship W4205087657A5000733841 @default.
- W4205087657 hasAuthorship W4205087657A5022103648 @default.
- W4205087657 hasAuthorship W4205087657A5045360539 @default.
- W4205087657 hasAuthorship W4205087657A5057325002 @default.
- W4205087657 hasAuthorship W4205087657A5071626917 @default.
- W4205087657 hasBestOaLocation W42050876572 @default.
- W4205087657 hasConcept C118552586 @default.
- W4205087657 hasConcept C134362201 @default.
- W4205087657 hasConcept C136764020 @default.
- W4205087657 hasConcept C142724271 @default.
- W4205087657 hasConcept C147077947 @default.
- W4205087657 hasConcept C15744967 @default.
- W4205087657 hasConcept C23131810 @default.
- W4205087657 hasConcept C2776674806 @default.
- W4205087657 hasConcept C2779134260 @default.
- W4205087657 hasConcept C2908647359 @default.
- W4205087657 hasConcept C3008058167 @default.
- W4205087657 hasConcept C41008148 @default.
- W4205087657 hasConcept C43169469 @default.
- W4205087657 hasConcept C524204448 @default.
- W4205087657 hasConcept C558461103 @default.
- W4205087657 hasConcept C70410870 @default.
- W4205087657 hasConcept C71924100 @default.
- W4205087657 hasConcept C89623803 @default.
- W4205087657 hasConcept C99454951 @default.
- W4205087657 hasConceptScore W4205087657C118552586 @default.
- W4205087657 hasConceptScore W4205087657C134362201 @default.
- W4205087657 hasConceptScore W4205087657C136764020 @default.
- W4205087657 hasConceptScore W4205087657C142724271 @default.
- W4205087657 hasConceptScore W4205087657C147077947 @default.
- W4205087657 hasConceptScore W4205087657C15744967 @default.
- W4205087657 hasConceptScore W4205087657C23131810 @default.
- W4205087657 hasConceptScore W4205087657C2776674806 @default.
- W4205087657 hasConceptScore W4205087657C2779134260 @default.
- W4205087657 hasConceptScore W4205087657C2908647359 @default.
- W4205087657 hasConceptScore W4205087657C3008058167 @default.
- W4205087657 hasConceptScore W4205087657C41008148 @default.
- W4205087657 hasConceptScore W4205087657C43169469 @default.
- W4205087657 hasConceptScore W4205087657C524204448 @default.
- W4205087657 hasConceptScore W4205087657C558461103 @default.
- W4205087657 hasConceptScore W4205087657C70410870 @default.
- W4205087657 hasConceptScore W4205087657C71924100 @default.
- W4205087657 hasConceptScore W4205087657C89623803 @default.
- W4205087657 hasConceptScore W4205087657C99454951 @default.
- W4205087657 hasLocation W42050876571 @default.
- W4205087657 hasLocation W42050876572 @default.
- W4205087657 hasOpenAccess W4205087657 @default.
- W4205087657 hasPrimaryLocation W42050876571 @default.
- W4205087657 hasRelatedWork W2001116168 @default.
- W4205087657 hasRelatedWork W2134151402 @default.
- W4205087657 hasRelatedWork W2435230023 @default.
- W4205087657 hasRelatedWork W3047652625 @default.
- W4205087657 hasRelatedWork W3098366301 @default.
- W4205087657 hasRelatedWork W4205226510 @default.
- W4205087657 hasRelatedWork W4205840191 @default.
- W4205087657 hasRelatedWork W4206031430 @default.
- W4205087657 hasRelatedWork W4206129361 @default.
- W4205087657 hasRelatedWork W4211108118 @default.
- W4205087657 isParatext "false" @default.
- W4205087657 isRetracted "false" @default.
- W4205087657 workType "article" @default.