Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205102904> ?p ?o ?g. }
- W4205102904 endingPage "1472" @default.
- W4205102904 startingPage "1457" @default.
- W4205102904 abstract "Massive machine-type communications (mMTC) are expected to support a large amount of randomly deployed users for short package transmissions. Noncoherent random access provides an efficient and practical multi-access protocol for mMTC, and also poses new challenges for the receiver design. In this paper, we leverage two well-known methods, i.e., message passing and deep learning, to jointly detect the user activity and the desired data for the noncoherent mMTC. First, by exploiting the exact distribution information of the received signal, a generalized approximate message passing (GAMP)-based algorithm is proposed, which is shown to jointly detect the user activity and the desired data by two modules: inter-user interference elimination and data detection for each user. Inspired by the two-module GAMP-based algorithm, we then propose a model-driven deep learning method, which utilizes the deep neural networks (DNNs) to approximate both the two modules. The loss function for training the DNNs is derived by formulating the two-module detection as an unconstrained optimization problem. Simulation results reveal that the proposed GAMP-based algorithm outperforms the proposed deep learning method when the channel distribution is perfectly known, while it suffers from a significant performance degradation for the case with imperfect channel distribution information." @default.
- W4205102904 created "2022-01-25" @default.
- W4205102904 creator A5011095038 @default.
- W4205102904 creator A5050852420 @default.
- W4205102904 creator A5053336194 @default.
- W4205102904 creator A5069113085 @default.
- W4205102904 creator A5072954777 @default.
- W4205102904 date "2022-05-01" @default.
- W4205102904 modified "2023-09-26" @default.
- W4205102904 title "Noncoherent Massive Random Access for Inhomogeneous Networks: From Message Passing to Deep Learning" @default.
- W4205102904 cites W1922937245 @default.
- W4205102904 cites W1993357071 @default.
- W4205102904 cites W1997834106 @default.
- W4205102904 cites W2014447384 @default.
- W4205102904 cites W2026933032 @default.
- W4205102904 cites W2046115679 @default.
- W4205102904 cites W2082029531 @default.
- W4205102904 cites W2115706991 @default.
- W4205102904 cites W2129076435 @default.
- W4205102904 cites W2135046866 @default.
- W4205102904 cites W2137813581 @default.
- W4205102904 cites W2137983211 @default.
- W4205102904 cites W2151693816 @default.
- W4205102904 cites W2164696938 @default.
- W4205102904 cites W2166670884 @default.
- W4205102904 cites W2273675851 @default.
- W4205102904 cites W2302231567 @default.
- W4205102904 cites W2404913679 @default.
- W4205102904 cites W2533208082 @default.
- W4205102904 cites W2619204584 @default.
- W4205102904 cites W2643502490 @default.
- W4205102904 cites W2706056020 @default.
- W4205102904 cites W2734408173 @default.
- W4205102904 cites W2738538347 @default.
- W4205102904 cites W2743723736 @default.
- W4205102904 cites W2753791741 @default.
- W4205102904 cites W2784331297 @default.
- W4205102904 cites W2810264842 @default.
- W4205102904 cites W2883289908 @default.
- W4205102904 cites W2890736047 @default.
- W4205102904 cites W2962783428 @default.
- W4205102904 cites W2963128632 @default.
- W4205102904 cites W2963206527 @default.
- W4205102904 cites W2963962451 @default.
- W4205102904 cites W2964184826 @default.
- W4205102904 cites W3009206715 @default.
- W4205102904 cites W3011934092 @default.
- W4205102904 cites W3022414928 @default.
- W4205102904 cites W3022711898 @default.
- W4205102904 cites W3035982503 @default.
- W4205102904 cites W3042527581 @default.
- W4205102904 cites W3046449295 @default.
- W4205102904 cites W3105020139 @default.
- W4205102904 cites W3113374047 @default.
- W4205102904 cites W3129806026 @default.
- W4205102904 cites W3132910041 @default.
- W4205102904 doi "https://doi.org/10.1109/jsac.2022.3143260" @default.
- W4205102904 hasPublicationYear "2022" @default.
- W4205102904 type Work @default.
- W4205102904 citedByCount "2" @default.
- W4205102904 countsByYear W42051029042023 @default.
- W4205102904 crossrefType "journal-article" @default.
- W4205102904 hasAuthorship W4205102904A5011095038 @default.
- W4205102904 hasAuthorship W4205102904A5050852420 @default.
- W4205102904 hasAuthorship W4205102904A5053336194 @default.
- W4205102904 hasAuthorship W4205102904A5069113085 @default.
- W4205102904 hasAuthorship W4205102904A5072954777 @default.
- W4205102904 hasConcept C108583219 @default.
- W4205102904 hasConcept C11413529 @default.
- W4205102904 hasConcept C120314980 @default.
- W4205102904 hasConcept C127162648 @default.
- W4205102904 hasConcept C153083717 @default.
- W4205102904 hasConcept C154945302 @default.
- W4205102904 hasConcept C2984842247 @default.
- W4205102904 hasConcept C31258907 @default.
- W4205102904 hasConcept C32022120 @default.
- W4205102904 hasConcept C41008148 @default.
- W4205102904 hasConcept C854659 @default.
- W4205102904 hasConceptScore W4205102904C108583219 @default.
- W4205102904 hasConceptScore W4205102904C11413529 @default.
- W4205102904 hasConceptScore W4205102904C120314980 @default.
- W4205102904 hasConceptScore W4205102904C127162648 @default.
- W4205102904 hasConceptScore W4205102904C153083717 @default.
- W4205102904 hasConceptScore W4205102904C154945302 @default.
- W4205102904 hasConceptScore W4205102904C2984842247 @default.
- W4205102904 hasConceptScore W4205102904C31258907 @default.
- W4205102904 hasConceptScore W4205102904C32022120 @default.
- W4205102904 hasConceptScore W4205102904C41008148 @default.
- W4205102904 hasConceptScore W4205102904C854659 @default.
- W4205102904 hasFunder F4320321001 @default.
- W4205102904 hasFunder F4320334704 @default.
- W4205102904 hasFunder F4320335777 @default.
- W4205102904 hasFunder F4320336405 @default.
- W4205102904 hasIssue "5" @default.
- W4205102904 hasLocation W42051029041 @default.
- W4205102904 hasOpenAccess W4205102904 @default.
- W4205102904 hasPrimaryLocation W42051029041 @default.
- W4205102904 hasRelatedWork W2006969008 @default.