Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205117944> ?p ?o ?g. }
- W4205117944 endingPage "162883" @default.
- W4205117944 startingPage "162869" @default.
- W4205117944 abstract "Code smells detection helps in improving understandability and maintainability of software while reducing the chances of system failure. In this study, six machine learning algorithms have been applied to predict code smells. For this purpose, four code smell datasets (God-class, Data-class, Feature-envy, and Long-method) are considered which are generated from 74 open-source systems. To evaluate the performance of machine learning algorithms on these code smell datasets, 10-fold cross validation technique is applied that predicts the model by partitioning the original dataset into a training set to train the model and test set to evaluate it. Two feature selection techniques are applied to enhance our prediction accuracy. The Chi-squared and Wrapper-based feature selection techniques are used to improve the accuracy of total six machine learning methods by choosing the top metrics in each dataset. Results obtained by applying these two feature selection techniques are compared. To improve the accuracy of these algorithms, grid search-based parameter optimization technique is applied. In this study, 100% accuracy was obtained for the Long-method dataset by using the Logistic Regression algorithm with all features while the worst performance 95.20 % was obtained by Naive Bayes algorithm for the Long-method dataset using the chi-square feature selection technique." @default.
- W4205117944 created "2022-01-25" @default.
- W4205117944 creator A5013584581 @default.
- W4205117944 creator A5027987269 @default.
- W4205117944 creator A5029915466 @default.
- W4205117944 creator A5068019959 @default.
- W4205117944 date "2021-01-01" @default.
- W4205117944 modified "2023-10-16" @default.
- W4205117944 title "A Novel Approach for Code Smell Detection: An Empirical Study" @default.
- W4205117944 cites W1505630141 @default.
- W4205117944 cites W1605844542 @default.
- W4205117944 cites W1860757347 @default.
- W4205117944 cites W1974189775 @default.
- W4205117944 cites W1974655094 @default.
- W4205117944 cites W2001730430 @default.
- W4205117944 cites W2008593255 @default.
- W4205117944 cites W2014418158 @default.
- W4205117944 cites W2019386815 @default.
- W4205117944 cites W2036570657 @default.
- W4205117944 cites W2045749853 @default.
- W4205117944 cites W2053703112 @default.
- W4205117944 cites W2064873664 @default.
- W4205117944 cites W2068321882 @default.
- W4205117944 cites W2071983648 @default.
- W4205117944 cites W2089910927 @default.
- W4205117944 cites W2095938258 @default.
- W4205117944 cites W2099535882 @default.
- W4205117944 cites W2105539612 @default.
- W4205117944 cites W2113867035 @default.
- W4205117944 cites W2126769187 @default.
- W4205117944 cites W2127163829 @default.
- W4205117944 cites W2139074146 @default.
- W4205117944 cites W2141069252 @default.
- W4205117944 cites W2149554597 @default.
- W4205117944 cites W2151295763 @default.
- W4205117944 cites W2154196314 @default.
- W4205117944 cites W2160506632 @default.
- W4205117944 cites W2402199355 @default.
- W4205117944 cites W2608628736 @default.
- W4205117944 cites W2771169143 @default.
- W4205117944 cites W2780783514 @default.
- W4205117944 cites W2796404405 @default.
- W4205117944 cites W2797042022 @default.
- W4205117944 cites W2908058835 @default.
- W4205117944 cites W2921312506 @default.
- W4205117944 cites W2945710970 @default.
- W4205117944 cites W2954327103 @default.
- W4205117944 cites W2956390618 @default.
- W4205117944 cites W2972835717 @default.
- W4205117944 cites W3014553393 @default.
- W4205117944 cites W3112073754 @default.
- W4205117944 cites W3119003027 @default.
- W4205117944 cites W3152613376 @default.
- W4205117944 cites W4234394889 @default.
- W4205117944 cites W4241233223 @default.
- W4205117944 cites W649920412 @default.
- W4205117944 doi "https://doi.org/10.1109/access.2021.3133810" @default.
- W4205117944 hasPublicationYear "2021" @default.
- W4205117944 type Work @default.
- W4205117944 citedByCount "13" @default.
- W4205117944 countsByYear W42051179442022 @default.
- W4205117944 countsByYear W42051179442023 @default.
- W4205117944 crossrefType "journal-article" @default.
- W4205117944 hasAuthorship W4205117944A5013584581 @default.
- W4205117944 hasAuthorship W4205117944A5027987269 @default.
- W4205117944 hasAuthorship W4205117944A5029915466 @default.
- W4205117944 hasAuthorship W4205117944A5068019959 @default.
- W4205117944 hasBestOaLocation W42051179441 @default.
- W4205117944 hasConcept C111919701 @default.
- W4205117944 hasConcept C115903868 @default.
- W4205117944 hasConcept C117447612 @default.
- W4205117944 hasConcept C119857082 @default.
- W4205117944 hasConcept C12267149 @default.
- W4205117944 hasConcept C124101348 @default.
- W4205117944 hasConcept C133237599 @default.
- W4205117944 hasConcept C138885662 @default.
- W4205117944 hasConcept C148483581 @default.
- W4205117944 hasConcept C154945302 @default.
- W4205117944 hasConcept C160713754 @default.
- W4205117944 hasConcept C169903167 @default.
- W4205117944 hasConcept C177264268 @default.
- W4205117944 hasConcept C199360897 @default.
- W4205117944 hasConcept C2776401178 @default.
- W4205117944 hasConcept C2776760102 @default.
- W4205117944 hasConcept C2777212361 @default.
- W4205117944 hasConcept C2777904410 @default.
- W4205117944 hasConcept C41008148 @default.
- W4205117944 hasConcept C41895202 @default.
- W4205117944 hasConcept C43126263 @default.
- W4205117944 hasConcept C52001869 @default.
- W4205117944 hasConcept C529173508 @default.
- W4205117944 hasConceptScore W4205117944C111919701 @default.
- W4205117944 hasConceptScore W4205117944C115903868 @default.
- W4205117944 hasConceptScore W4205117944C117447612 @default.
- W4205117944 hasConceptScore W4205117944C119857082 @default.
- W4205117944 hasConceptScore W4205117944C12267149 @default.
- W4205117944 hasConceptScore W4205117944C124101348 @default.
- W4205117944 hasConceptScore W4205117944C133237599 @default.