Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205120610> ?p ?o ?g. }
- W4205120610 endingPage "165" @default.
- W4205120610 startingPage "141" @default.
- W4205120610 abstract "The scientific research centered on generating new data by performing basic experiments to answer specific questions related to any infectious diseases. The application of big data in the area of infectious diseases has introduced a number of changes in the information accumulation models using analytics. Therefore this chapter discusses the concept of big data for guaranteeing better expansion and research against coronavirus disease 2019 (COVID-19). The chapter examines how large-volume medical data can help clarify and elucidate COVID-19 disease patterns. Also, the chapter conveys the benefits of big data analytics during COVID-19. The hope of using big data in COVID-19 will have a great impact on the quality of outbreak care that can be delivered to patients across socioeconomic and geographic boundaries." @default.
- W4205120610 created "2022-01-26" @default.
- W4205120610 creator A5006568741 @default.
- W4205120610 creator A5014025363 @default.
- W4205120610 creator A5033128263 @default.
- W4205120610 creator A5042259358 @default.
- W4205120610 date "2022-01-01" @default.
- W4205120610 modified "2023-10-18" @default.
- W4205120610 title "Application of big data in COVID-19 epidemic" @default.
- W4205120610 cites W1598788287 @default.
- W4205120610 cites W1979379564 @default.
- W4205120610 cites W1980093536 @default.
- W4205120610 cites W1986321739 @default.
- W4205120610 cites W1986406829 @default.
- W4205120610 cites W1993035486 @default.
- W4205120610 cites W1996796857 @default.
- W4205120610 cites W2004910511 @default.
- W4205120610 cites W2007343074 @default.
- W4205120610 cites W2008541195 @default.
- W4205120610 cites W2009790391 @default.
- W4205120610 cites W2027540165 @default.
- W4205120610 cites W2037677991 @default.
- W4205120610 cites W2061848003 @default.
- W4205120610 cites W2082302018 @default.
- W4205120610 cites W2083721602 @default.
- W4205120610 cites W2109574129 @default.
- W4205120610 cites W2118023920 @default.
- W4205120610 cites W2120751691 @default.
- W4205120610 cites W2127757685 @default.
- W4205120610 cites W2165093166 @default.
- W4205120610 cites W2167414941 @default.
- W4205120610 cites W2242456062 @default.
- W4205120610 cites W2261525379 @default.
- W4205120610 cites W2285118877 @default.
- W4205120610 cites W2304273040 @default.
- W4205120610 cites W2461447695 @default.
- W4205120610 cites W2507285739 @default.
- W4205120610 cites W2548753368 @default.
- W4205120610 cites W2549346488 @default.
- W4205120610 cites W2554926856 @default.
- W4205120610 cites W2555839251 @default.
- W4205120610 cites W2557007068 @default.
- W4205120610 cites W2582718788 @default.
- W4205120610 cites W2594593007 @default.
- W4205120610 cites W2604976044 @default.
- W4205120610 cites W2735541318 @default.
- W4205120610 cites W2743602240 @default.
- W4205120610 cites W2744726626 @default.
- W4205120610 cites W2747968860 @default.
- W4205120610 cites W2766393383 @default.
- W4205120610 cites W2766447205 @default.
- W4205120610 cites W2770629248 @default.
- W4205120610 cites W2781852611 @default.
- W4205120610 cites W2803194242 @default.
- W4205120610 cites W2810449314 @default.
- W4205120610 cites W2883585595 @default.
- W4205120610 cites W2887124611 @default.
- W4205120610 cites W2893451783 @default.
- W4205120610 cites W2898735074 @default.
- W4205120610 cites W2905179958 @default.
- W4205120610 cites W2909014521 @default.
- W4205120610 cites W2911449978 @default.
- W4205120610 cites W2919720720 @default.
- W4205120610 cites W2921244893 @default.
- W4205120610 cites W2931144334 @default.
- W4205120610 cites W2940022522 @default.
- W4205120610 cites W2963901460 @default.
- W4205120610 cites W2970434820 @default.
- W4205120610 cites W2971924659 @default.
- W4205120610 cites W2973066167 @default.
- W4205120610 cites W2997069256 @default.
- W4205120610 cites W3002533507 @default.
- W4205120610 cites W3003573988 @default.
- W4205120610 cites W3006645647 @default.
- W4205120610 cites W3006834170 @default.
- W4205120610 cites W3008028633 @default.
- W4205120610 cites W3009003996 @default.
- W4205120610 cites W3012538234 @default.
- W4205120610 cites W3121961986 @default.
- W4205120610 doi "https://doi.org/10.1016/b978-0-323-90769-9.00023-2" @default.
- W4205120610 hasPublicationYear "2022" @default.
- W4205120610 type Work @default.
- W4205120610 citedByCount "2" @default.
- W4205120610 countsByYear W42051206102022 @default.
- W4205120610 crossrefType "book-chapter" @default.
- W4205120610 hasAuthorship W4205120610A5006568741 @default.
- W4205120610 hasAuthorship W4205120610A5014025363 @default.
- W4205120610 hasAuthorship W4205120610A5033128263 @default.
- W4205120610 hasAuthorship W4205120610A5042259358 @default.
- W4205120610 hasBestOaLocation W42051206101 @default.
- W4205120610 hasConcept C116675565 @default.
- W4205120610 hasConcept C124101348 @default.
- W4205120610 hasConcept C142724271 @default.
- W4205120610 hasConcept C159047783 @default.
- W4205120610 hasConcept C2522767166 @default.
- W4205120610 hasConcept C2779134260 @default.
- W4205120610 hasConcept C3006700255 @default.
- W4205120610 hasConcept C3007834351 @default.