Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205121663> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4205121663 endingPage "940" @default.
- W4205121663 startingPage "940" @default.
- W4205121663 abstract "Bus operation scheduling is closely related to passenger flow. Accurate bus passenger flow prediction can help improve urban bus planning and service quality and reduce the cost of bus operation. Using machine learning algorithms to find the rules of urban bus passenger flow has become one of the research hotspots in the field of public transportation, especially with the rise of big data technology. Bus IC card data are an important data resource and are more valuable to passenger flow prediction in comparison with manual survey data. Aiming at the balance between efficiency and accuracy of passenger flow prediction for multiple lines, we propose a novel passenger flow prediction model based on the point-of-interest (POI) data and extreme gradient boosting (XGBoost), called PFP-XPOI. Firstly, we collected POI data around bus stops based on the Amap Web service application interface. Secondly, three dimensions were considered for building the model. Finally, the XGBoost algorithm was chosen to train the model for each bus line. Results show that the model has higher prediction accuracy through comparison with other models, and thus this method can be used for short-term passenger flow forecasting using bus IC cards. It plays a very important role in providing decision basis for more refined bus operation management." @default.
- W4205121663 created "2022-01-25" @default.
- W4205121663 creator A5036698882 @default.
- W4205121663 creator A5039159197 @default.
- W4205121663 creator A5051094293 @default.
- W4205121663 creator A5062762447 @default.
- W4205121663 date "2022-01-18" @default.
- W4205121663 modified "2023-09-26" @default.
- W4205121663 title "A Bus Passenger Flow Prediction Model Fused with Point-of-Interest Data Based on Extreme Gradient Boosting" @default.
- W4205121663 cites W2002841906 @default.
- W4205121663 cites W2044985623 @default.
- W4205121663 cites W2051300307 @default.
- W4205121663 cites W2086357615 @default.
- W4205121663 cites W2317582298 @default.
- W4205121663 cites W2528510132 @default.
- W4205121663 cites W2735348515 @default.
- W4205121663 cites W2755763809 @default.
- W4205121663 cites W2794778778 @default.
- W4205121663 cites W2889243506 @default.
- W4205121663 cites W2912985636 @default.
- W4205121663 cites W2947543278 @default.
- W4205121663 cites W3029490708 @default.
- W4205121663 cites W3084394145 @default.
- W4205121663 cites W3119724063 @default.
- W4205121663 cites W3156170057 @default.
- W4205121663 cites W3165161279 @default.
- W4205121663 cites W3175581386 @default.
- W4205121663 cites W3207571777 @default.
- W4205121663 doi "https://doi.org/10.3390/app12030940" @default.
- W4205121663 hasPublicationYear "2022" @default.
- W4205121663 type Work @default.
- W4205121663 citedByCount "8" @default.
- W4205121663 countsByYear W42051216632022 @default.
- W4205121663 countsByYear W42051216632023 @default.
- W4205121663 crossrefType "journal-article" @default.
- W4205121663 hasAuthorship W4205121663A5036698882 @default.
- W4205121663 hasAuthorship W4205121663A5039159197 @default.
- W4205121663 hasAuthorship W4205121663A5051094293 @default.
- W4205121663 hasAuthorship W4205121663A5062762447 @default.
- W4205121663 hasBestOaLocation W42051216631 @default.
- W4205121663 hasConcept C124101348 @default.
- W4205121663 hasConcept C127413603 @default.
- W4205121663 hasConcept C154945302 @default.
- W4205121663 hasConcept C206729178 @default.
- W4205121663 hasConcept C21547014 @default.
- W4205121663 hasConcept C22212356 @default.
- W4205121663 hasConcept C2524010 @default.
- W4205121663 hasConcept C28719098 @default.
- W4205121663 hasConcept C33923547 @default.
- W4205121663 hasConcept C41008148 @default.
- W4205121663 hasConcept C46686674 @default.
- W4205121663 hasConcept C539828613 @default.
- W4205121663 hasConcept C79403827 @default.
- W4205121663 hasConceptScore W4205121663C124101348 @default.
- W4205121663 hasConceptScore W4205121663C127413603 @default.
- W4205121663 hasConceptScore W4205121663C154945302 @default.
- W4205121663 hasConceptScore W4205121663C206729178 @default.
- W4205121663 hasConceptScore W4205121663C21547014 @default.
- W4205121663 hasConceptScore W4205121663C22212356 @default.
- W4205121663 hasConceptScore W4205121663C2524010 @default.
- W4205121663 hasConceptScore W4205121663C28719098 @default.
- W4205121663 hasConceptScore W4205121663C33923547 @default.
- W4205121663 hasConceptScore W4205121663C41008148 @default.
- W4205121663 hasConceptScore W4205121663C46686674 @default.
- W4205121663 hasConceptScore W4205121663C539828613 @default.
- W4205121663 hasConceptScore W4205121663C79403827 @default.
- W4205121663 hasFunder F4320321001 @default.
- W4205121663 hasIssue "3" @default.
- W4205121663 hasLocation W42051216631 @default.
- W4205121663 hasLocation W42051216632 @default.
- W4205121663 hasOpenAccess W4205121663 @default.
- W4205121663 hasPrimaryLocation W42051216631 @default.
- W4205121663 hasRelatedWork W1882733036 @default.
- W4205121663 hasRelatedWork W1969740176 @default.
- W4205121663 hasRelatedWork W1992741870 @default.
- W4205121663 hasRelatedWork W1998940060 @default.
- W4205121663 hasRelatedWork W2255183448 @default.
- W4205121663 hasRelatedWork W2382510858 @default.
- W4205121663 hasRelatedWork W2546696010 @default.
- W4205121663 hasRelatedWork W2997221951 @default.
- W4205121663 hasRelatedWork W3174582865 @default.
- W4205121663 hasRelatedWork W4206452239 @default.
- W4205121663 hasVolume "12" @default.
- W4205121663 isParatext "false" @default.
- W4205121663 isRetracted "false" @default.
- W4205121663 workType "article" @default.