Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205121737> ?p ?o ?g. }
- W4205121737 endingPage "212" @default.
- W4205121737 startingPage "202" @default.
- W4205121737 abstract "Background Ultra-low-dose (ULD) CT could facilitate the clinical implementation of large-scale lung cancer screening while minimizing the radiation dose. However, traditional image reconstruction methods are associated with image noise in low-dose acquisitions. Purpose To compare the image quality and lung nodule detectability of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-V (ASIR-V) in ULD CT. Materials and Methods Patients who underwent noncontrast ULD CT (performed at 0.07 or 0.14 mSv, similar to a single chest radiograph) and contrast-enhanced chest CT (CECT) from April to June 2020 were included in this prospective study. ULD CT images were reconstructed with filtered back projection (FBP), ASIR-V, and DLIR. Three-dimensional segmentation of lung tissue was performed to evaluate image noise. Radiologists detected and measured nodules with use of a deep learning-based nodule assessment system and recognized malignancy-related imaging features. Bland-Altman analysis and repeated-measures analysis of variance were used to evaluate the differences between ULD CT images and CECT images. Results A total of 203 participants (mean age ± standard deviation, 61 years ± 12; 129 men) with 1066 nodules were included, with 100 scans at 0.07 mSv and 103 scans at 0.14 mSv. The mean lung tissue noise ± standard deviation was 46 HU ± 4 for CECT and 59 HU ± 4, 56 HU ± 4, 53 HU ± 4, 54 HU ± 4, and 51 HU ± 4 in FBP, ASIR-V level 40%, ASIR-V level 80% (ASIR-V-80%), medium-strength DLIR, and high-strength DLIR (DLIR-H), respectively, of ULD CT scans (P < .001). The nodule detection rates of FBP reconstruction, ASIR-V-80%, and DLIR-H were 62.5% (666 of 1066 nodules), 73.3% (781 of 1066 nodules), and 75.8% (808 of 1066 nodules), respectively (P < .001). Bland-Altman analysis showed the percentage difference in long diameter from that of CECT was 9.3% (95% CI of the mean: 8.0, 10.6), 9.2% (95% CI of the mean: 8.0, 10.4), and 6.2% (95% CI of the mean: 5.0, 7.4) in FBP reconstruction, ASIR-V-80%, and DLIR-H, respectively (P < .001). Conclusion Compared with adaptive statistical iterative reconstruction-V, deep learning image reconstruction reduced image noise, increased nodule detection rate, and improved measurement accuracy on ultra-low-dose chest CT images. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee in this issue." @default.
- W4205121737 created "2022-01-26" @default.
- W4205121737 creator A5007322337 @default.
- W4205121737 creator A5012401657 @default.
- W4205121737 creator A5016173245 @default.
- W4205121737 creator A5017536956 @default.
- W4205121737 creator A5040311043 @default.
- W4205121737 creator A5059492462 @default.
- W4205121737 creator A5070838971 @default.
- W4205121737 creator A5079767244 @default.
- W4205121737 date "2022-04-01" @default.
- W4205121737 modified "2023-10-13" @default.
- W4205121737 title "Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra–Low-Dose Chest CT" @default.
- W4205121737 cites W1949839429 @default.
- W4205121737 cites W1976860159 @default.
- W4205121737 cites W2003624223 @default.
- W4205121737 cites W2029692243 @default.
- W4205121737 cites W2047169513 @default.
- W4205121737 cites W2050733395 @default.
- W4205121737 cites W2120903075 @default.
- W4205121737 cites W2141298660 @default.
- W4205121737 cites W2572030640 @default.
- W4205121737 cites W2811475446 @default.
- W4205121737 cites W2889646458 @default.
- W4205121737 cites W2900226127 @default.
- W4205121737 cites W2921237545 @default.
- W4205121737 cites W2937456081 @default.
- W4205121737 cites W2971198564 @default.
- W4205121737 cites W2972256219 @default.
- W4205121737 cites W2972730176 @default.
- W4205121737 cites W2992931937 @default.
- W4205121737 cites W2995610300 @default.
- W4205121737 cites W2999575735 @default.
- W4205121737 cites W3003415550 @default.
- W4205121737 cites W3010759084 @default.
- W4205121737 cites W3015948052 @default.
- W4205121737 cites W3045884753 @default.
- W4205121737 cites W3092429880 @default.
- W4205121737 doi "https://doi.org/10.1148/radiol.210551" @default.
- W4205121737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35040674" @default.
- W4205121737 hasPublicationYear "2022" @default.
- W4205121737 type Work @default.
- W4205121737 citedByCount "37" @default.
- W4205121737 countsByYear W42051217372022 @default.
- W4205121737 countsByYear W42051217372023 @default.
- W4205121737 crossrefType "journal-article" @default.
- W4205121737 hasAuthorship W4205121737A5007322337 @default.
- W4205121737 hasAuthorship W4205121737A5012401657 @default.
- W4205121737 hasAuthorship W4205121737A5016173245 @default.
- W4205121737 hasAuthorship W4205121737A5017536956 @default.
- W4205121737 hasAuthorship W4205121737A5040311043 @default.
- W4205121737 hasAuthorship W4205121737A5059492462 @default.
- W4205121737 hasAuthorship W4205121737A5070838971 @default.
- W4205121737 hasAuthorship W4205121737A5079767244 @default.
- W4205121737 hasBestOaLocation W42051217372 @default.
- W4205121737 hasConcept C115961682 @default.
- W4205121737 hasConcept C126322002 @default.
- W4205121737 hasConcept C126838900 @default.
- W4205121737 hasConcept C141379421 @default.
- W4205121737 hasConcept C142724271 @default.
- W4205121737 hasConcept C151730666 @default.
- W4205121737 hasConcept C154945302 @default.
- W4205121737 hasConcept C2776256026 @default.
- W4205121737 hasConcept C2776731575 @default.
- W4205121737 hasConcept C2777714996 @default.
- W4205121737 hasConcept C2779399171 @default.
- W4205121737 hasConcept C2989005 @default.
- W4205121737 hasConcept C35772409 @default.
- W4205121737 hasConcept C41008148 @default.
- W4205121737 hasConcept C55020928 @default.
- W4205121737 hasConcept C71924100 @default.
- W4205121737 hasConcept C86803240 @default.
- W4205121737 hasConceptScore W4205121737C115961682 @default.
- W4205121737 hasConceptScore W4205121737C126322002 @default.
- W4205121737 hasConceptScore W4205121737C126838900 @default.
- W4205121737 hasConceptScore W4205121737C141379421 @default.
- W4205121737 hasConceptScore W4205121737C142724271 @default.
- W4205121737 hasConceptScore W4205121737C151730666 @default.
- W4205121737 hasConceptScore W4205121737C154945302 @default.
- W4205121737 hasConceptScore W4205121737C2776256026 @default.
- W4205121737 hasConceptScore W4205121737C2776731575 @default.
- W4205121737 hasConceptScore W4205121737C2777714996 @default.
- W4205121737 hasConceptScore W4205121737C2779399171 @default.
- W4205121737 hasConceptScore W4205121737C2989005 @default.
- W4205121737 hasConceptScore W4205121737C35772409 @default.
- W4205121737 hasConceptScore W4205121737C41008148 @default.
- W4205121737 hasConceptScore W4205121737C55020928 @default.
- W4205121737 hasConceptScore W4205121737C71924100 @default.
- W4205121737 hasConceptScore W4205121737C86803240 @default.
- W4205121737 hasFunder F4320321001 @default.
- W4205121737 hasFunder F4320321540 @default.
- W4205121737 hasFunder F4320321885 @default.
- W4205121737 hasFunder F4320322999 @default.
- W4205121737 hasFunder F4320332457 @default.
- W4205121737 hasIssue "1" @default.
- W4205121737 hasLocation W42051217371 @default.
- W4205121737 hasLocation W42051217372 @default.
- W4205121737 hasLocation W42051217373 @default.