Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205123384> ?p ?o ?g. }
- W4205123384 endingPage "219" @default.
- W4205123384 startingPage "219" @default.
- W4205123384 abstract "To realize a machine learning (ML) model to estimate the dose of low molecular weight heparin to be administered, preventing thromboembolism events in COVID-19 patients with active cancer. Methods: We used a dataset comprising 131 patients with active cancer and COVID-19. We considered five ML models: logistic regression, decision tree, random forest, support vector machine and Gaussian naive Bayes. We decided to implement the logistic regression model for our study. A model with 19 variables was analyzed. Data were randomly split into training (70%) and testing (30%) sets. Model performance was assessed by confusion matrix metrics on the testing data for each model as positive predictive value, sensitivity and F1-score. Results: We showed that the five selected models outperformed classical statistical methods of predictive validity and logistic regression was the most effective, being able to classify with an accuracy of 81%. The most relevant result was finding a patient-proof where python function was able to obtain the exact dose of low weight molecular heparin to be administered and thereby to prevent the occurrence of VTE. Conclusions: The world of machine learning and artificial intelligence is constantly developing. The identification of a specific LMWH dose for preventing VTE in very high-risk populations, such as the COVID-19 and active cancer population, might improve with the use of new training ML-based algorithms. Larger studies are needed to confirm our exploratory results." @default.
- W4205123384 created "2022-01-25" @default.
- W4205123384 creator A5003503228 @default.
- W4205123384 creator A5016503714 @default.
- W4205123384 creator A5016747690 @default.
- W4205123384 creator A5020660579 @default.
- W4205123384 creator A5024275708 @default.
- W4205123384 creator A5026952973 @default.
- W4205123384 creator A5038099524 @default.
- W4205123384 creator A5040457683 @default.
- W4205123384 creator A5043712546 @default.
- W4205123384 creator A5054429253 @default.
- W4205123384 creator A5062127717 @default.
- W4205123384 creator A5068357190 @default.
- W4205123384 creator A5068440626 @default.
- W4205123384 creator A5072316630 @default.
- W4205123384 creator A5075485021 @default.
- W4205123384 date "2021-12-31" @default.
- W4205123384 modified "2023-10-05" @default.
- W4205123384 title "Machine Learning to Calculate Heparin Dose in COVID-19 Patients with Active Cancer" @default.
- W4205123384 cites W145459059 @default.
- W4205123384 cites W2033377234 @default.
- W4205123384 cites W2046912033 @default.
- W4205123384 cites W2162851198 @default.
- W4205123384 cites W2257438637 @default.
- W4205123384 cites W2313923699 @default.
- W4205123384 cites W2314377487 @default.
- W4205123384 cites W2332736166 @default.
- W4205123384 cites W2743269518 @default.
- W4205123384 cites W2810860675 @default.
- W4205123384 cites W2944098284 @default.
- W4205123384 cites W2946367714 @default.
- W4205123384 cites W3008461878 @default.
- W4205123384 cites W3013486442 @default.
- W4205123384 cites W3018782743 @default.
- W4205123384 cites W3020859230 @default.
- W4205123384 cites W3033702373 @default.
- W4205123384 cites W3034965161 @default.
- W4205123384 cites W3037319793 @default.
- W4205123384 cites W3037475073 @default.
- W4205123384 cites W3037711393 @default.
- W4205123384 cites W3043049174 @default.
- W4205123384 cites W3047268902 @default.
- W4205123384 cites W3066799101 @default.
- W4205123384 cites W3080847620 @default.
- W4205123384 cites W3087020210 @default.
- W4205123384 cites W3087439650 @default.
- W4205123384 cites W3095611749 @default.
- W4205123384 cites W3096670204 @default.
- W4205123384 cites W3105711452 @default.
- W4205123384 cites W3111911754 @default.
- W4205123384 cites W3135692744 @default.
- W4205123384 cites W3139332923 @default.
- W4205123384 cites W3177486256 @default.
- W4205123384 cites W3182067642 @default.
- W4205123384 cites W3198369012 @default.
- W4205123384 doi "https://doi.org/10.3390/jcm11010219" @default.
- W4205123384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35011959" @default.
- W4205123384 hasPublicationYear "2021" @default.
- W4205123384 type Work @default.
- W4205123384 citedByCount "6" @default.
- W4205123384 countsByYear W42051233842022 @default.
- W4205123384 countsByYear W42051233842023 @default.
- W4205123384 crossrefType "journal-article" @default.
- W4205123384 hasAuthorship W4205123384A5003503228 @default.
- W4205123384 hasAuthorship W4205123384A5016503714 @default.
- W4205123384 hasAuthorship W4205123384A5016747690 @default.
- W4205123384 hasAuthorship W4205123384A5020660579 @default.
- W4205123384 hasAuthorship W4205123384A5024275708 @default.
- W4205123384 hasAuthorship W4205123384A5026952973 @default.
- W4205123384 hasAuthorship W4205123384A5038099524 @default.
- W4205123384 hasAuthorship W4205123384A5040457683 @default.
- W4205123384 hasAuthorship W4205123384A5043712546 @default.
- W4205123384 hasAuthorship W4205123384A5054429253 @default.
- W4205123384 hasAuthorship W4205123384A5062127717 @default.
- W4205123384 hasAuthorship W4205123384A5068357190 @default.
- W4205123384 hasAuthorship W4205123384A5068440626 @default.
- W4205123384 hasAuthorship W4205123384A5072316630 @default.
- W4205123384 hasAuthorship W4205123384A5075485021 @default.
- W4205123384 hasBestOaLocation W42051233841 @default.
- W4205123384 hasConcept C105795698 @default.
- W4205123384 hasConcept C107673813 @default.
- W4205123384 hasConcept C119857082 @default.
- W4205123384 hasConcept C12267149 @default.
- W4205123384 hasConcept C126322002 @default.
- W4205123384 hasConcept C138602881 @default.
- W4205123384 hasConcept C151956035 @default.
- W4205123384 hasConcept C154945302 @default.
- W4205123384 hasConcept C169258074 @default.
- W4205123384 hasConcept C207201462 @default.
- W4205123384 hasConcept C2908647359 @default.
- W4205123384 hasConcept C33923547 @default.
- W4205123384 hasConcept C41008148 @default.
- W4205123384 hasConcept C52001869 @default.
- W4205123384 hasConcept C71924100 @default.
- W4205123384 hasConcept C84525736 @default.
- W4205123384 hasConcept C99454951 @default.
- W4205123384 hasConceptScore W4205123384C105795698 @default.