Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205123573> ?p ?o ?g. }
- W4205123573 endingPage "107913" @default.
- W4205123573 startingPage "107913" @default.
- W4205123573 abstract "New energy vehicles (NEVs) such as electronic cars represent a major trend in the automobile industry, where most their exterior designs still follow those of convention fuelled vehicles (FVs). It is important to investigate whether NEV users have unique requirements that differ from those of traditional users. Kansei engineering is a practical tool for perceptual demand analysis. However, the conventional method requires questionnaires or surveys to perform limited data collection. In this study, we utilised massive internet data to collect user Kansei requirements for NEV exterior design. The Scrapy crawler was adopted for data collection and a bidirectional long short-term memory, conditional random field, and multilayer perceptron framework was developed for text mining. To quantify design features and Kansei image scores, a hybrid Apriori + structural equation model (SEM) system is proposed, where the data-driven Apriori algorithm can explore the hidden relationships in big user generated comments, while the SEM model captures the users’ behaviour and decision procedure so that to provide interpretable results. In addition, the association rules mined from user comments by Apriori can facilitate the specification of a complicated SEM model, substantially reducing the modelling and calibration effort. Goodness-of-fit results suggest that the proposed model outperforms conventional models. A case study on 1805 automobiles, 287 brands, and 369105 comments was conducted and the results suggest that some design features that would increase the Kansei image scores for conventional FVs may have the opposite effect on NEVs. Discussions on engineering and managerial insights are presented and the discovered rules and relationships are employed to develop a design-aided system." @default.
- W4205123573 created "2022-01-26" @default.
- W4205123573 creator A5047855118 @default.
- W4205123573 creator A5059531436 @default.
- W4205123573 creator A5064858556 @default.
- W4205123573 creator A5075662908 @default.
- W4205123573 creator A5080589076 @default.
- W4205123573 date "2022-03-01" @default.
- W4205123573 modified "2023-10-18" @default.
- W4205123573 title "Kansei engineering for new energy vehicle exterior design: An internet big data mining approach" @default.
- W4205123573 cites W1748706058 @default.
- W4205123573 cites W1898333544 @default.
- W4205123573 cites W1999209397 @default.
- W4205123573 cites W2002077307 @default.
- W4205123573 cites W2037777275 @default.
- W4205123573 cites W2042169656 @default.
- W4205123573 cites W2043016011 @default.
- W4205123573 cites W2053049902 @default.
- W4205123573 cites W2063607036 @default.
- W4205123573 cites W2143599027 @default.
- W4205123573 cites W2170500434 @default.
- W4205123573 cites W2299859864 @default.
- W4205123573 cites W2427312199 @default.
- W4205123573 cites W2528188384 @default.
- W4205123573 cites W2602150565 @default.
- W4205123573 cites W2729101176 @default.
- W4205123573 cites W2769169333 @default.
- W4205123573 cites W2785376983 @default.
- W4205123573 cites W2791333126 @default.
- W4205123573 cites W2792041436 @default.
- W4205123573 cites W2801875192 @default.
- W4205123573 cites W2803875933 @default.
- W4205123573 cites W2844568069 @default.
- W4205123573 cites W2899273380 @default.
- W4205123573 cites W2908483739 @default.
- W4205123573 cites W2911576302 @default.
- W4205123573 cites W2915385321 @default.
- W4205123573 cites W2925613093 @default.
- W4205123573 cites W2937094194 @default.
- W4205123573 cites W2942640611 @default.
- W4205123573 cites W2948614377 @default.
- W4205123573 cites W2951706218 @default.
- W4205123573 cites W2955757716 @default.
- W4205123573 cites W2962902328 @default.
- W4205123573 cites W2982225079 @default.
- W4205123573 cites W2987410285 @default.
- W4205123573 cites W3022446239 @default.
- W4205123573 cites W3086103249 @default.
- W4205123573 cites W3096554474 @default.
- W4205123573 cites W3114246617 @default.
- W4205123573 cites W3123028521 @default.
- W4205123573 cites W3124809751 @default.
- W4205123573 cites W3126357747 @default.
- W4205123573 cites W3127997425 @default.
- W4205123573 cites W3135605821 @default.
- W4205123573 cites W4235271607 @default.
- W4205123573 doi "https://doi.org/10.1016/j.cie.2021.107913" @default.
- W4205123573 hasPublicationYear "2022" @default.
- W4205123573 type Work @default.
- W4205123573 citedByCount "16" @default.
- W4205123573 countsByYear W42051235732022 @default.
- W4205123573 countsByYear W42051235732023 @default.
- W4205123573 crossrefType "journal-article" @default.
- W4205123573 hasAuthorship W4205123573A5047855118 @default.
- W4205123573 hasAuthorship W4205123573A5059531436 @default.
- W4205123573 hasAuthorship W4205123573A5064858556 @default.
- W4205123573 hasAuthorship W4205123573A5075662908 @default.
- W4205123573 hasAuthorship W4205123573A5080589076 @default.
- W4205123573 hasConcept C107457646 @default.
- W4205123573 hasConcept C110875604 @default.
- W4205123573 hasConcept C111472728 @default.
- W4205123573 hasConcept C119857082 @default.
- W4205123573 hasConcept C124101348 @default.
- W4205123573 hasConcept C136764020 @default.
- W4205123573 hasConcept C138885662 @default.
- W4205123573 hasConcept C154945302 @default.
- W4205123573 hasConcept C193524817 @default.
- W4205123573 hasConcept C202444582 @default.
- W4205123573 hasConcept C2780562538 @default.
- W4205123573 hasConcept C2781297728 @default.
- W4205123573 hasConcept C33923547 @default.
- W4205123573 hasConcept C41008148 @default.
- W4205123573 hasConcept C75553542 @default.
- W4205123573 hasConcept C9652623 @default.
- W4205123573 hasConceptScore W4205123573C107457646 @default.
- W4205123573 hasConceptScore W4205123573C110875604 @default.
- W4205123573 hasConceptScore W4205123573C111472728 @default.
- W4205123573 hasConceptScore W4205123573C119857082 @default.
- W4205123573 hasConceptScore W4205123573C124101348 @default.
- W4205123573 hasConceptScore W4205123573C136764020 @default.
- W4205123573 hasConceptScore W4205123573C138885662 @default.
- W4205123573 hasConceptScore W4205123573C154945302 @default.
- W4205123573 hasConceptScore W4205123573C193524817 @default.
- W4205123573 hasConceptScore W4205123573C202444582 @default.
- W4205123573 hasConceptScore W4205123573C2780562538 @default.
- W4205123573 hasConceptScore W4205123573C2781297728 @default.
- W4205123573 hasConceptScore W4205123573C33923547 @default.
- W4205123573 hasConceptScore W4205123573C41008148 @default.