Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205123636> ?p ?o ?g. }
- W4205123636 endingPage "175" @default.
- W4205123636 startingPage "175" @default.
- W4205123636 abstract "(1) Background: Chest radiographs are the mainstay of initial radiological investigation in this COVID-19 pandemic. A reliable and readily deployable artificial intelligence (AI) algorithm that detects pneumonia in COVID-19 suspects can be useful for screening or triage in a hospital setting. This study has a few objectives: first, to develop a model that accurately detects pneumonia in COVID-19 suspects; second, to assess its performance in a real-world clinical setting; and third, by integrating the model with the daily clinical workflow, to measure its impact on report turn-around time. (2) Methods: The model was developed from the NIH Chest-14 open-source dataset and fine-tuned using an internal dataset comprising more than 4000 CXRs acquired in our institution. Input from two senior radiologists provided the reference standard. The model was integrated into daily clinical workflow, prioritising abnormal CXRs for expedited reporting. Area under the receiver operating characteristic curve (AUC), F1 score, sensitivity, and specificity were calculated to characterise diagnostic performance. The average time taken by radiologists in reporting the CXRs was compared against the mean baseline time taken prior to implementation of the AI model. (3) Results: 9431 unique CXRs were included in the datasets, of which 1232 were ground truth-labelled positive for pneumonia. On the live dataset, the model achieved an AUC of 0.95 (95% confidence interval (CI): 0.92, 0.96) corresponding to a specificity of 97% (95% CI: 0.97, 0.98) and sensitivity of 79% (95% CI: 0.72, 0.84). No statistically significant degradation of diagnostic performance was encountered during clinical deployment, and report turn-around time was reduced by 22%. (4) Conclusion: In real-world clinical deployment, our model expedites reporting of pneumonia in COVID-19 suspects while preserving diagnostic performance without significant model drift." @default.
- W4205123636 created "2022-01-26" @default.
- W4205123636 creator A5005286821 @default.
- W4205123636 creator A5014182396 @default.
- W4205123636 creator A5014242041 @default.
- W4205123636 creator A5017061083 @default.
- W4205123636 creator A5028809442 @default.
- W4205123636 creator A5042772797 @default.
- W4205123636 creator A5048592829 @default.
- W4205123636 creator A5052064127 @default.
- W4205123636 creator A5055657005 @default.
- W4205123636 creator A5064390827 @default.
- W4205123636 creator A5067953198 @default.
- W4205123636 creator A5084625490 @default.
- W4205123636 creator A5086389738 @default.
- W4205123636 creator A5088219039 @default.
- W4205123636 creator A5090974995 @default.
- W4205123636 date "2022-01-17" @default.
- W4205123636 modified "2023-10-14" @default.
- W4205123636 title "Diagnostic Performance of a Deep Learning Model Deployed at a National COVID-19 Screening Facility for Detection of Pneumonia on Frontal Chest Radiographs" @default.
- W4205123636 cites W1507985183 @default.
- W4205123636 cites W2884561390 @default.
- W4205123636 cites W3000386310 @default.
- W4205123636 cites W3002108456 @default.
- W4205123636 cites W3006882119 @default.
- W4205123636 cites W3007497549 @default.
- W4205123636 cites W3010951319 @default.
- W4205123636 cites W3012211282 @default.
- W4205123636 cites W3013130152 @default.
- W4205123636 cites W3014524604 @default.
- W4205123636 cites W3015622421 @default.
- W4205123636 cites W3017178763 @default.
- W4205123636 cites W3017451406 @default.
- W4205123636 cites W3017855299 @default.
- W4205123636 cites W3019336217 @default.
- W4205123636 cites W3021214012 @default.
- W4205123636 cites W3023402713 @default.
- W4205123636 cites W3036326142 @default.
- W4205123636 cites W3036552116 @default.
- W4205123636 cites W3040660552 @default.
- W4205123636 cites W3041463877 @default.
- W4205123636 cites W3041809298 @default.
- W4205123636 cites W3042427901 @default.
- W4205123636 cites W3045460727 @default.
- W4205123636 cites W3049131298 @default.
- W4205123636 cites W3084392726 @default.
- W4205123636 cites W3087265446 @default.
- W4205123636 cites W3087508367 @default.
- W4205123636 cites W3088020307 @default.
- W4205123636 cites W3103635657 @default.
- W4205123636 cites W3107538751 @default.
- W4205123636 cites W3118372097 @default.
- W4205123636 cites W3129482290 @default.
- W4205123636 cites W3165568330 @default.
- W4205123636 cites W3165713284 @default.
- W4205123636 cites W3167147947 @default.
- W4205123636 cites W3176871337 @default.
- W4205123636 cites W3181644688 @default.
- W4205123636 cites W3200840849 @default.
- W4205123636 cites W4230649743 @default.
- W4205123636 doi "https://doi.org/10.3390/healthcare10010175" @default.
- W4205123636 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35052339" @default.
- W4205123636 hasPublicationYear "2022" @default.
- W4205123636 type Work @default.
- W4205123636 citedByCount "6" @default.
- W4205123636 countsByYear W42051236362022 @default.
- W4205123636 countsByYear W42051236362023 @default.
- W4205123636 crossrefType "journal-article" @default.
- W4205123636 hasAuthorship W4205123636A5005286821 @default.
- W4205123636 hasAuthorship W4205123636A5014182396 @default.
- W4205123636 hasAuthorship W4205123636A5014242041 @default.
- W4205123636 hasAuthorship W4205123636A5017061083 @default.
- W4205123636 hasAuthorship W4205123636A5028809442 @default.
- W4205123636 hasAuthorship W4205123636A5042772797 @default.
- W4205123636 hasAuthorship W4205123636A5048592829 @default.
- W4205123636 hasAuthorship W4205123636A5052064127 @default.
- W4205123636 hasAuthorship W4205123636A5055657005 @default.
- W4205123636 hasAuthorship W4205123636A5064390827 @default.
- W4205123636 hasAuthorship W4205123636A5067953198 @default.
- W4205123636 hasAuthorship W4205123636A5084625490 @default.
- W4205123636 hasAuthorship W4205123636A5086389738 @default.
- W4205123636 hasAuthorship W4205123636A5088219039 @default.
- W4205123636 hasAuthorship W4205123636A5090974995 @default.
- W4205123636 hasBestOaLocation W42051236361 @default.
- W4205123636 hasConcept C119857082 @default.
- W4205123636 hasConcept C126322002 @default.
- W4205123636 hasConcept C126838900 @default.
- W4205123636 hasConcept C154945302 @default.
- W4205123636 hasConcept C177212765 @default.
- W4205123636 hasConcept C190892606 @default.
- W4205123636 hasConcept C194828623 @default.
- W4205123636 hasConcept C2777120189 @default.
- W4205123636 hasConcept C2777914695 @default.
- W4205123636 hasConcept C2779134260 @default.
- W4205123636 hasConcept C3008058167 @default.
- W4205123636 hasConcept C36454342 @default.
- W4205123636 hasConcept C41008148 @default.
- W4205123636 hasConcept C44249647 @default.