Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205124783> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4205124783 abstract "Space weather forecasting remains a national priority in the United States due to the impacts of events like solar flares to life on Earth. High energy bursts of radiation originating from solar flares have the potential to disrupt critical infrastructure systems, including the power grid and GPS and radio communications. The rise of machine learning and the development of higher-quality instruments has greatly improved solar flare prediction models over the past decade. However, the magnetogram data used for solar flare forecasting—taken by the Solar and Heliospheric Observatory/Michelson Doppler Interferometer (SOHO/MDI) and the NASA Solar Dynamic Observatory/Helioseismic and Magnetic Imager (SDO/HMI) instruments—are incompatible due to differences in the cadence, resolution, and size of the data. Furthermore, many studies only focus on data from a single instrument which disregards decades worth of potential training data that is necessary to understand solar cycles. In this work, we show Generative Adversarial Networks (GANs) can be used to super-resolve the historic lower-quality SOHO/MDI data set to match SDO/HMI quality to create a standardized magnetogram data set. The implementation of a Pix2Pix GAN produced some undesirable artifacts in the synthetic image while image translation methods CycleGAN and CUT preserved solar features present in the data more accurately, even in the absence of paired data. The resulting combined, higher-quality data set will be used to improve the predictive power of current solar flare forecasting models." @default.
- W4205124783 created "2022-01-25" @default.
- W4205124783 creator A5046653592 @default.
- W4205124783 creator A5058306424 @default.
- W4205124783 date "2022-01-11" @default.
- W4205124783 modified "2023-10-16" @default.
- W4205124783 title "Data Augmentation of Magnetograms for Solar Flare Prediction using Generative Adversarial Networks" @default.
- W4205124783 doi "https://doi.org/10.1002/essoar.10510080.1" @default.
- W4205124783 hasPublicationYear "2022" @default.
- W4205124783 type Work @default.
- W4205124783 citedByCount "0" @default.
- W4205124783 crossrefType "posted-content" @default.
- W4205124783 hasAuthorship W4205124783A5046653592 @default.
- W4205124783 hasAuthorship W4205124783A5058306424 @default.
- W4205124783 hasBestOaLocation W42051247831 @default.
- W4205124783 hasConcept C115260700 @default.
- W4205124783 hasConcept C121332964 @default.
- W4205124783 hasConcept C1276947 @default.
- W4205124783 hasConcept C151325931 @default.
- W4205124783 hasConcept C153294291 @default.
- W4205124783 hasConcept C154945302 @default.
- W4205124783 hasConcept C157479481 @default.
- W4205124783 hasConcept C185001636 @default.
- W4205124783 hasConcept C185798385 @default.
- W4205124783 hasConcept C205649164 @default.
- W4205124783 hasConcept C2779471453 @default.
- W4205124783 hasConcept C2779588948 @default.
- W4205124783 hasConcept C2779919027 @default.
- W4205124783 hasConcept C41008148 @default.
- W4205124783 hasConcept C58489278 @default.
- W4205124783 hasConcept C58640448 @default.
- W4205124783 hasConcept C62520636 @default.
- W4205124783 hasConcept C62649853 @default.
- W4205124783 hasConceptScore W4205124783C115260700 @default.
- W4205124783 hasConceptScore W4205124783C121332964 @default.
- W4205124783 hasConceptScore W4205124783C1276947 @default.
- W4205124783 hasConceptScore W4205124783C151325931 @default.
- W4205124783 hasConceptScore W4205124783C153294291 @default.
- W4205124783 hasConceptScore W4205124783C154945302 @default.
- W4205124783 hasConceptScore W4205124783C157479481 @default.
- W4205124783 hasConceptScore W4205124783C185001636 @default.
- W4205124783 hasConceptScore W4205124783C185798385 @default.
- W4205124783 hasConceptScore W4205124783C205649164 @default.
- W4205124783 hasConceptScore W4205124783C2779471453 @default.
- W4205124783 hasConceptScore W4205124783C2779588948 @default.
- W4205124783 hasConceptScore W4205124783C2779919027 @default.
- W4205124783 hasConceptScore W4205124783C41008148 @default.
- W4205124783 hasConceptScore W4205124783C58489278 @default.
- W4205124783 hasConceptScore W4205124783C58640448 @default.
- W4205124783 hasConceptScore W4205124783C62520636 @default.
- W4205124783 hasConceptScore W4205124783C62649853 @default.
- W4205124783 hasFunder F4320306076 @default.
- W4205124783 hasLocation W42051247831 @default.
- W4205124783 hasOpenAccess W4205124783 @default.
- W4205124783 hasPrimaryLocation W42051247831 @default.
- W4205124783 hasRelatedWork W1542958686 @default.
- W4205124783 hasRelatedWork W1619432394 @default.
- W4205124783 hasRelatedWork W2898885271 @default.
- W4205124783 hasRelatedWork W2969487577 @default.
- W4205124783 hasRelatedWork W3099712007 @default.
- W4205124783 hasRelatedWork W3104497846 @default.
- W4205124783 hasRelatedWork W3168249270 @default.
- W4205124783 hasRelatedWork W4297399353 @default.
- W4205124783 hasRelatedWork W4310813326 @default.
- W4205124783 hasRelatedWork W799461249 @default.
- W4205124783 isParatext "false" @default.
- W4205124783 isRetracted "false" @default.
- W4205124783 workType "article" @default.