Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205125007> ?p ?o ?g. }
- W4205125007 endingPage "556" @default.
- W4205125007 startingPage "544" @default.
- W4205125007 abstract "Abstract Aquatic megafauna are difficult to observe and count due to the inaccessibility and issues of detectability. Traditional transect and helicopter counts are useful for obtaining population estimates, but they often have logistical and cost limitations. The recent proliferation of drone technology offers an innovative way of surveying animal populations. However, data collected from drones are hindered by an analysis bottleneck that increases the time needed to process them. Convolutional Neural Networks (CNNs) are an emerging category of deep learning that can automate this data analysis process. Here, we compare traditional methods with drone surveys, by detecting and counting Nile crocodiles ( Crocodylus niloticus ) and common hippopotami ( Hippopotamus amphibious ). We evaluate the utility of CNNs for object detection and quantification in complex environments. Drone counts were more accurate than traditional methods; identifying 21% more crocodiles. Where vegetation was open, hippo counts with a drone showed a similar pattern (identifying 43% more). When vegetation was dense the drone produced less‐accurate population estimates than traditional methods. CNN accuracy was limited (85%) due to the reduced training dataset available for the CNN. However, with an expanded data set, object detection is likely to be more accurate, making it more applicable for expedited and automated data analysis." @default.
- W4205125007 created "2022-01-25" @default.
- W4205125007 creator A5015594597 @default.
- W4205125007 creator A5047747566 @default.
- W4205125007 creator A5074524869 @default.
- W4205125007 date "2022-01-17" @default.
- W4205125007 modified "2023-09-27" @default.
- W4205125007 title "Effectiveness of using drones and convolutional neural networks to monitor aquatic megafauna" @default.
- W4205125007 cites W1678253433 @default.
- W4205125007 cites W1728600603 @default.
- W4205125007 cites W1901027973 @default.
- W4205125007 cites W1934566139 @default.
- W4205125007 cites W1966074269 @default.
- W4205125007 cites W2066603560 @default.
- W4205125007 cites W2089212648 @default.
- W4205125007 cites W2295871059 @default.
- W4205125007 cites W2323722282 @default.
- W4205125007 cites W2331725058 @default.
- W4205125007 cites W2483141174 @default.
- W4205125007 cites W2579519384 @default.
- W4205125007 cites W2598225981 @default.
- W4205125007 cites W2617669016 @default.
- W4205125007 cites W2637985556 @default.
- W4205125007 cites W2766340385 @default.
- W4205125007 cites W2782689936 @default.
- W4205125007 cites W2786052032 @default.
- W4205125007 cites W2802243754 @default.
- W4205125007 cites W2810030371 @default.
- W4205125007 cites W2810477488 @default.
- W4205125007 cites W2888766590 @default.
- W4205125007 cites W2900040935 @default.
- W4205125007 cites W2900099025 @default.
- W4205125007 cites W2900725639 @default.
- W4205125007 cites W2906300491 @default.
- W4205125007 cites W2911010442 @default.
- W4205125007 cites W2914321566 @default.
- W4205125007 cites W2914978454 @default.
- W4205125007 cites W2938198159 @default.
- W4205125007 cites W2944277284 @default.
- W4205125007 cites W2945020140 @default.
- W4205125007 cites W2971356361 @default.
- W4205125007 cites W3033201736 @default.
- W4205125007 cites W3088311973 @default.
- W4205125007 cites W3106250896 @default.
- W4205125007 cites W3123775691 @default.
- W4205125007 cites W3158818754 @default.
- W4205125007 doi "https://doi.org/10.1111/aje.12950" @default.
- W4205125007 hasPublicationYear "2022" @default.
- W4205125007 type Work @default.
- W4205125007 citedByCount "1" @default.
- W4205125007 countsByYear W42051250072022 @default.
- W4205125007 crossrefType "journal-article" @default.
- W4205125007 hasAuthorship W4205125007A5015594597 @default.
- W4205125007 hasAuthorship W4205125007A5047747566 @default.
- W4205125007 hasAuthorship W4205125007A5074524869 @default.
- W4205125007 hasConcept C119857082 @default.
- W4205125007 hasConcept C144024400 @default.
- W4205125007 hasConcept C149635348 @default.
- W4205125007 hasConcept C149923435 @default.
- W4205125007 hasConcept C154945302 @default.
- W4205125007 hasConcept C205649164 @default.
- W4205125007 hasConcept C2780513914 @default.
- W4205125007 hasConcept C2908647359 @default.
- W4205125007 hasConcept C41008148 @default.
- W4205125007 hasConcept C54355233 @default.
- W4205125007 hasConcept C58640448 @default.
- W4205125007 hasConcept C59519942 @default.
- W4205125007 hasConcept C81363708 @default.
- W4205125007 hasConcept C86803240 @default.
- W4205125007 hasConceptScore W4205125007C119857082 @default.
- W4205125007 hasConceptScore W4205125007C144024400 @default.
- W4205125007 hasConceptScore W4205125007C149635348 @default.
- W4205125007 hasConceptScore W4205125007C149923435 @default.
- W4205125007 hasConceptScore W4205125007C154945302 @default.
- W4205125007 hasConceptScore W4205125007C205649164 @default.
- W4205125007 hasConceptScore W4205125007C2780513914 @default.
- W4205125007 hasConceptScore W4205125007C2908647359 @default.
- W4205125007 hasConceptScore W4205125007C41008148 @default.
- W4205125007 hasConceptScore W4205125007C54355233 @default.
- W4205125007 hasConceptScore W4205125007C58640448 @default.
- W4205125007 hasConceptScore W4205125007C59519942 @default.
- W4205125007 hasConceptScore W4205125007C81363708 @default.
- W4205125007 hasConceptScore W4205125007C86803240 @default.
- W4205125007 hasIssue "3" @default.
- W4205125007 hasLocation W42051250071 @default.
- W4205125007 hasOpenAccess W4205125007 @default.
- W4205125007 hasPrimaryLocation W42051250071 @default.
- W4205125007 hasRelatedWork W2354251581 @default.
- W4205125007 hasRelatedWork W2357461155 @default.
- W4205125007 hasRelatedWork W2384129116 @default.
- W4205125007 hasRelatedWork W2765781654 @default.
- W4205125007 hasRelatedWork W2961085424 @default.
- W4205125007 hasRelatedWork W3021430260 @default.
- W4205125007 hasRelatedWork W3027997911 @default.
- W4205125007 hasRelatedWork W3145924829 @default.
- W4205125007 hasRelatedWork W4220882927 @default.
- W4205125007 hasRelatedWork W4287776258 @default.
- W4205125007 hasVolume "60" @default.