Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205125524> ?p ?o ?g. }
- W4205125524 endingPage "012005" @default.
- W4205125524 startingPage "012005" @default.
- W4205125524 abstract "Abstract A time series is an order of observations engaged serially in time. The prime objective of time series analysis is to build mathematical models that provide reasonable descriptions from training data. The goal of time series analysis is to forecast the forthcoming values of a series based on the history of the same series. Forecasting of stock markets is a thought-provoking problem because of the number of possible variables as well as volatile noise that may contribute to the prices of the stock. However, the capability to analyze stock market leanings could be vital to investors, traders and researchers, hence has been of continued interest. Plentiful arithmetical and machine learning practices have been discovered for stock analysis and forecasting/prediction. In this paper, we perform a comparative study on two very capable artificial neural network models i) Deep Neural Network (DNN) and ii) Long Short-Term Memory (LSTM) a type of recurrent neural network (RNN) in predicting the daily variance of NIFTYIT in BSE (Bombay Stock Exchange) and NSE (National Stock Exchange) markets. DNN was chosen due to its capability to handle complex data with substantial performance and better generalization without being saturated. LSTM model was decided, as it contains intermediary memory which can hold the historic patterns and occurrence of the next prediction depends on the values that preceded it. With both networks, measures were taken to reduce overfitting. Daily predictions of the NIFTYIT index were made to test the generalizability of the models. Both networks performed well at making daily predictions, and both generalized admirably to make daily predictions of the NiftyIT data. The LSTM-RNN outpaced the DNN in terms of forecasting and thus, grips more potential for making longer-term estimates." @default.
- W4205125524 created "2022-01-26" @default.
- W4205125524 creator A5044492465 @default.
- W4205125524 creator A5049057054 @default.
- W4205125524 creator A5063858151 @default.
- W4205125524 creator A5018795701 @default.
- W4205125524 date "2022-01-01" @default.
- W4205125524 modified "2023-09-26" @default.
- W4205125524 title "Forecasting variance of NiftyIT index with RNN and DNN" @default.
- W4205125524 cites W1969852690 @default.
- W4205125524 cites W2911608625 @default.
- W4205125524 cites W2914419771 @default.
- W4205125524 cites W2999917590 @default.
- W4205125524 cites W3036201112 @default.
- W4205125524 cites W3125647618 @default.
- W4205125524 cites W3134983162 @default.
- W4205125524 cites W3158990412 @default.
- W4205125524 cites W3159606943 @default.
- W4205125524 cites W3163814467 @default.
- W4205125524 doi "https://doi.org/10.1088/1742-6596/2161/1/012005" @default.
- W4205125524 hasPublicationYear "2022" @default.
- W4205125524 type Work @default.
- W4205125524 citedByCount "2" @default.
- W4205125524 countsByYear W42051255242022 @default.
- W4205125524 countsByYear W42051255242023 @default.
- W4205125524 crossrefType "journal-article" @default.
- W4205125524 hasAuthorship W4205125524A5018795701 @default.
- W4205125524 hasAuthorship W4205125524A5044492465 @default.
- W4205125524 hasAuthorship W4205125524A5049057054 @default.
- W4205125524 hasAuthorship W4205125524A5063858151 @default.
- W4205125524 hasBestOaLocation W42051255241 @default.
- W4205125524 hasConcept C10138342 @default.
- W4205125524 hasConcept C105795698 @default.
- W4205125524 hasConcept C119857082 @default.
- W4205125524 hasConcept C127413603 @default.
- W4205125524 hasConcept C134306372 @default.
- W4205125524 hasConcept C136764020 @default.
- W4205125524 hasConcept C147168706 @default.
- W4205125524 hasConcept C149782125 @default.
- W4205125524 hasConcept C151406439 @default.
- W4205125524 hasConcept C151730666 @default.
- W4205125524 hasConcept C154945302 @default.
- W4205125524 hasConcept C162324750 @default.
- W4205125524 hasConcept C177148314 @default.
- W4205125524 hasConcept C200870193 @default.
- W4205125524 hasConcept C204036174 @default.
- W4205125524 hasConcept C22019652 @default.
- W4205125524 hasConcept C27158222 @default.
- W4205125524 hasConcept C2777382242 @default.
- W4205125524 hasConcept C2780299701 @default.
- W4205125524 hasConcept C2780762169 @default.
- W4205125524 hasConcept C33923547 @default.
- W4205125524 hasConcept C41008148 @default.
- W4205125524 hasConcept C50644808 @default.
- W4205125524 hasConcept C78519656 @default.
- W4205125524 hasConcept C86803240 @default.
- W4205125524 hasConcept C88389905 @default.
- W4205125524 hasConceptScore W4205125524C10138342 @default.
- W4205125524 hasConceptScore W4205125524C105795698 @default.
- W4205125524 hasConceptScore W4205125524C119857082 @default.
- W4205125524 hasConceptScore W4205125524C127413603 @default.
- W4205125524 hasConceptScore W4205125524C134306372 @default.
- W4205125524 hasConceptScore W4205125524C136764020 @default.
- W4205125524 hasConceptScore W4205125524C147168706 @default.
- W4205125524 hasConceptScore W4205125524C149782125 @default.
- W4205125524 hasConceptScore W4205125524C151406439 @default.
- W4205125524 hasConceptScore W4205125524C151730666 @default.
- W4205125524 hasConceptScore W4205125524C154945302 @default.
- W4205125524 hasConceptScore W4205125524C162324750 @default.
- W4205125524 hasConceptScore W4205125524C177148314 @default.
- W4205125524 hasConceptScore W4205125524C200870193 @default.
- W4205125524 hasConceptScore W4205125524C204036174 @default.
- W4205125524 hasConceptScore W4205125524C22019652 @default.
- W4205125524 hasConceptScore W4205125524C27158222 @default.
- W4205125524 hasConceptScore W4205125524C2777382242 @default.
- W4205125524 hasConceptScore W4205125524C2780299701 @default.
- W4205125524 hasConceptScore W4205125524C2780762169 @default.
- W4205125524 hasConceptScore W4205125524C33923547 @default.
- W4205125524 hasConceptScore W4205125524C41008148 @default.
- W4205125524 hasConceptScore W4205125524C50644808 @default.
- W4205125524 hasConceptScore W4205125524C78519656 @default.
- W4205125524 hasConceptScore W4205125524C86803240 @default.
- W4205125524 hasConceptScore W4205125524C88389905 @default.
- W4205125524 hasIssue "1" @default.
- W4205125524 hasLocation W42051255241 @default.
- W4205125524 hasOpenAccess W4205125524 @default.
- W4205125524 hasPrimaryLocation W42051255241 @default.
- W4205125524 hasRelatedWork W1996541855 @default.
- W4205125524 hasRelatedWork W2289642014 @default.
- W4205125524 hasRelatedWork W2899744278 @default.
- W4205125524 hasRelatedWork W2940336242 @default.
- W4205125524 hasRelatedWork W2989932438 @default.
- W4205125524 hasRelatedWork W3047749858 @default.
- W4205125524 hasRelatedWork W3099765033 @default.
- W4205125524 hasRelatedWork W4210794429 @default.
- W4205125524 hasRelatedWork W4283732135 @default.
- W4205125524 hasRelatedWork W4313159793 @default.
- W4205125524 hasVolume "2161" @default.