Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205126426> ?p ?o ?g. }
- W4205126426 endingPage "397" @default.
- W4205126426 startingPage "397" @default.
- W4205126426 abstract "Remote sensing of land surface mostly obtains a mixture of spectral information of soil and vegetation. It is thus of great value if soil and vegetation information can be acquired simultaneously from one model. In this study, we designed a laboratory experiment to simulate land surface compositions, including various soil types with varying soil moisture and vegetation coverage. A model of a one-dimensional convolutional neural network (1DCNN) was established to simultaneously estimate soil properties (organic matter, soil moisture, clay, and sand) and vegetation coverage based on the hyperspectral data measured in the experiment. The results showed that the model achieved excellent predictions for soil properties (R2 = 0.88–0.91, RPIQ = 4.01–5.78) and vegetation coverage (R2 = 0.95, RPIQ = 7.75). Compared with the partial least-squares regression (PLSR), the prediction accuracy of 1DCNN improved 42.20%, 45.82%, 43.32%, and 36.46% in terms of the root-mean-squared error (RMSE) for predicting soil organic matter, sand, clay, and soil moisture, respectively. The improvement might be caused by the fact that the spectral preprocessing and spectral features useful for predicting soil properties were successfully identified in the 1DCNN model. For the prediction of vegetation coverage, although the prediction accuracy by 1DCNN was excellent, its performance (R2 = 0.95, RPIQ = 7.75, RMSE = 3.92%) was lower than the PLSR model (R2 = 0.98, RPIQ = 12.57, RMSE = 2.41%). These results indicate that 1DCNN can simultaneously predict soil properties and vegetation coverage. However, the factors such as surface roughness and vegetation type that could affect the prediction accuracy should be investigated in the future." @default.
- W4205126426 created "2022-01-25" @default.
- W4205126426 creator A5001300018 @default.
- W4205126426 creator A5029063882 @default.
- W4205126426 creator A5029398201 @default.
- W4205126426 creator A5065558554 @default.
- W4205126426 creator A5070672448 @default.
- W4205126426 creator A5083057394 @default.
- W4205126426 creator A5085352453 @default.
- W4205126426 creator A5086767072 @default.
- W4205126426 date "2022-01-15" @default.
- W4205126426 modified "2023-10-01" @default.
- W4205126426 title "The Simultaneous Prediction of Soil Properties and Vegetation Coverage from Vis-NIR Hyperspectral Data with a One-Dimensional Convolutional Neural Network: A Laboratory Simulation Study" @default.
- W4205126426 cites W1966801922 @default.
- W4205126426 cites W1973273412 @default.
- W4205126426 cites W1978160572 @default.
- W4205126426 cites W1998053851 @default.
- W4205126426 cites W2071249186 @default.
- W4205126426 cites W2073858026 @default.
- W4205126426 cites W2078665635 @default.
- W4205126426 cites W2082125477 @default.
- W4205126426 cites W2084366347 @default.
- W4205126426 cites W2096171073 @default.
- W4205126426 cites W2116395914 @default.
- W4205126426 cites W2124584066 @default.
- W4205126426 cites W2146738048 @default.
- W4205126426 cites W2150853822 @default.
- W4205126426 cites W2181373972 @default.
- W4205126426 cites W2240067561 @default.
- W4205126426 cites W22745672 @default.
- W4205126426 cites W2339216980 @default.
- W4205126426 cites W2339388922 @default.
- W4205126426 cites W2566295821 @default.
- W4205126426 cites W2612850324 @default.
- W4205126426 cites W2618530766 @default.
- W4205126426 cites W2802787693 @default.
- W4205126426 cites W2884300959 @default.
- W4205126426 cites W2901663058 @default.
- W4205126426 cites W2901886395 @default.
- W4205126426 cites W2903091095 @default.
- W4205126426 cites W2909099826 @default.
- W4205126426 cites W2909481289 @default.
- W4205126426 cites W2951230751 @default.
- W4205126426 cites W2963377935 @default.
- W4205126426 cites W2972225768 @default.
- W4205126426 cites W2973375236 @default.
- W4205126426 cites W2987656986 @default.
- W4205126426 cites W2990199568 @default.
- W4205126426 cites W2999020264 @default.
- W4205126426 cites W3010310735 @default.
- W4205126426 cites W3012334084 @default.
- W4205126426 cites W3015832727 @default.
- W4205126426 cites W3098027022 @default.
- W4205126426 cites W3153100379 @default.
- W4205126426 cites W3153636879 @default.
- W4205126426 cites W3160605082 @default.
- W4205126426 cites W3207444164 @default.
- W4205126426 cites W4233760599 @default.
- W4205126426 doi "https://doi.org/10.3390/rs14020397" @default.
- W4205126426 hasPublicationYear "2022" @default.
- W4205126426 type Work @default.
- W4205126426 citedByCount "4" @default.
- W4205126426 countsByYear W42051264262022 @default.
- W4205126426 countsByYear W42051264262023 @default.
- W4205126426 crossrefType "journal-article" @default.
- W4205126426 hasAuthorship W4205126426A5001300018 @default.
- W4205126426 hasAuthorship W4205126426A5029063882 @default.
- W4205126426 hasAuthorship W4205126426A5029398201 @default.
- W4205126426 hasAuthorship W4205126426A5065558554 @default.
- W4205126426 hasAuthorship W4205126426A5070672448 @default.
- W4205126426 hasAuthorship W4205126426A5083057394 @default.
- W4205126426 hasAuthorship W4205126426A5085352453 @default.
- W4205126426 hasAuthorship W4205126426A5086767072 @default.
- W4205126426 hasBestOaLocation W42051264261 @default.
- W4205126426 hasConcept C105795698 @default.
- W4205126426 hasConcept C127313418 @default.
- W4205126426 hasConcept C139945424 @default.
- W4205126426 hasConcept C142724271 @default.
- W4205126426 hasConcept C159078339 @default.
- W4205126426 hasConcept C159390177 @default.
- W4205126426 hasConcept C159750122 @default.
- W4205126426 hasConcept C182124840 @default.
- W4205126426 hasConcept C187320778 @default.
- W4205126426 hasConcept C22354355 @default.
- W4205126426 hasConcept C24939127 @default.
- W4205126426 hasConcept C2776133958 @default.
- W4205126426 hasConcept C33923547 @default.
- W4205126426 hasConcept C39432304 @default.
- W4205126426 hasConcept C62649853 @default.
- W4205126426 hasConcept C71924100 @default.
- W4205126426 hasConceptScore W4205126426C105795698 @default.
- W4205126426 hasConceptScore W4205126426C127313418 @default.
- W4205126426 hasConceptScore W4205126426C139945424 @default.
- W4205126426 hasConceptScore W4205126426C142724271 @default.
- W4205126426 hasConceptScore W4205126426C159078339 @default.
- W4205126426 hasConceptScore W4205126426C159390177 @default.
- W4205126426 hasConceptScore W4205126426C159750122 @default.
- W4205126426 hasConceptScore W4205126426C182124840 @default.