Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205126435> ?p ?o ?g. }
- W4205126435 endingPage "104111" @default.
- W4205126435 startingPage "104111" @default.
- W4205126435 abstract "Decision-making in highway preventive maintenance (PM) is generally costly and complicated. An inappropriate maintenance strategy could yield a low efficiency of budget usage and untreated road distress. This study describes an innovative predictive maintenance strategy that provides direct maintenance guidance to specific highway mileposts. This was achieved with the application of the artificial neural network (ANN) algorithm to mine a maintenance database. Ten-year distress measurement data at 100-m intervals, traffic load data, climatic history, and maintenance records of a chosen highway were regarded as the input data of the ANN model. A data quality control method was proposed to ensure asphalt pavement performance improvement continuity over time based on the idea of the maintenance year as the starting point for prediction. The backpropagation neural network (BPNN) model and a hybrid neural network (HNN) were applied to predict five indexes of the highway asphalt pavement performance, and the genetic algorithm (GA) was employed to optimize the hyperparameters of these models. The results indicate that the GA enhanced HNN model could increase the accuracy by 35% on average compared with traditional ANN in predicting the highway asphalt distress performance. Furthermore, a notable agreement is attained when comparing the predicted indexes to the whole-year measurement data invalidation with average coefficient of determination (R2) reaches 0.74. This study demonstrates the potential of an innovative ANN method in highway distress prediction to provide direct guidance for long-term highway asphalt pavement optimal rehabilitation and maintenance (R&M) decisions." @default.
- W4205126435 created "2022-01-25" @default.
- W4205126435 creator A5036564178 @default.
- W4205126435 creator A5038670039 @default.
- W4205126435 creator A5047000286 @default.
- W4205126435 creator A5069549198 @default.
- W4205126435 date "2022-03-01" @default.
- W4205126435 modified "2023-10-01" @default.
- W4205126435 title "Automated decision making in highway pavement preventive maintenance based on deep learning" @default.
- W4205126435 cites W1897917406 @default.
- W4205126435 cites W1927448143 @default.
- W4205126435 cites W1953373051 @default.
- W4205126435 cites W1965674556 @default.
- W4205126435 cites W1980202894 @default.
- W4205126435 cites W1981456570 @default.
- W4205126435 cites W1983059765 @default.
- W4205126435 cites W2003409057 @default.
- W4205126435 cites W2021937471 @default.
- W4205126435 cites W2031713099 @default.
- W4205126435 cites W2039764797 @default.
- W4205126435 cites W2059994022 @default.
- W4205126435 cites W2064021683 @default.
- W4205126435 cites W2126566575 @default.
- W4205126435 cites W2130323932 @default.
- W4205126435 cites W2161329384 @default.
- W4205126435 cites W2282861040 @default.
- W4205126435 cites W2547032137 @default.
- W4205126435 cites W2568401061 @default.
- W4205126435 cites W2736376421 @default.
- W4205126435 cites W2768789280 @default.
- W4205126435 cites W2791817377 @default.
- W4205126435 cites W2890167402 @default.
- W4205126435 cites W2893113437 @default.
- W4205126435 cites W2896105504 @default.
- W4205126435 cites W2901917507 @default.
- W4205126435 cites W2907393893 @default.
- W4205126435 cites W2909597659 @default.
- W4205126435 cites W2911912670 @default.
- W4205126435 cites W2913745892 @default.
- W4205126435 cites W2914403927 @default.
- W4205126435 cites W2931628776 @default.
- W4205126435 cites W2944114041 @default.
- W4205126435 cites W2946407484 @default.
- W4205126435 cites W2947452436 @default.
- W4205126435 cites W2953751569 @default.
- W4205126435 cites W2993403158 @default.
- W4205126435 cites W2995071460 @default.
- W4205126435 cites W2997206386 @default.
- W4205126435 cites W2997934904 @default.
- W4205126435 cites W3006983763 @default.
- W4205126435 cites W3011404023 @default.
- W4205126435 cites W3022031496 @default.
- W4205126435 cites W3025384446 @default.
- W4205126435 cites W3026899377 @default.
- W4205126435 cites W3039432969 @default.
- W4205126435 cites W3040899439 @default.
- W4205126435 cites W3042901667 @default.
- W4205126435 cites W3044871553 @default.
- W4205126435 cites W3085136768 @default.
- W4205126435 cites W3087899468 @default.
- W4205126435 cites W3112099171 @default.
- W4205126435 cites W3130971617 @default.
- W4205126435 cites W3149726120 @default.
- W4205126435 cites W3158170518 @default.
- W4205126435 cites W3158462424 @default.
- W4205126435 cites W3159496368 @default.
- W4205126435 cites W3167324106 @default.
- W4205126435 doi "https://doi.org/10.1016/j.autcon.2021.104111" @default.
- W4205126435 hasPublicationYear "2022" @default.
- W4205126435 type Work @default.
- W4205126435 citedByCount "27" @default.
- W4205126435 countsByYear W42051264352022 @default.
- W4205126435 countsByYear W42051264352023 @default.
- W4205126435 crossrefType "journal-article" @default.
- W4205126435 hasAuthorship W4205126435A5036564178 @default.
- W4205126435 hasAuthorship W4205126435A5038670039 @default.
- W4205126435 hasAuthorship W4205126435A5047000286 @default.
- W4205126435 hasAuthorship W4205126435A5069549198 @default.
- W4205126435 hasConcept C119857082 @default.
- W4205126435 hasConcept C127413603 @default.
- W4205126435 hasConcept C139265228 @default.
- W4205126435 hasConcept C155032097 @default.
- W4205126435 hasConcept C168056786 @default.
- W4205126435 hasConcept C18903297 @default.
- W4205126435 hasConcept C200601418 @default.
- W4205126435 hasConcept C205649164 @default.
- W4205126435 hasConcept C22212356 @default.
- W4205126435 hasConcept C24090081 @default.
- W4205126435 hasConcept C2780996376 @default.
- W4205126435 hasConcept C41008148 @default.
- W4205126435 hasConcept C50644808 @default.
- W4205126435 hasConcept C58640448 @default.
- W4205126435 hasConcept C8642999 @default.
- W4205126435 hasConcept C86803240 @default.
- W4205126435 hasConcept C8880873 @default.
- W4205126435 hasConceptScore W4205126435C119857082 @default.
- W4205126435 hasConceptScore W4205126435C127413603 @default.
- W4205126435 hasConceptScore W4205126435C139265228 @default.