Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205127725> ?p ?o ?g. }
- W4205127725 endingPage "6753" @default.
- W4205127725 startingPage "6723" @default.
- W4205127725 abstract "Leukemia (blood cancer) is an unusual spread of White Blood Cells or Leukocytes (WBCs) in the bone marrow and blood. Pathologists can diagnose leukemia by looking at a person’s blood sample under a microscope. They identify and categorize leukemia by counting various blood cells and morphological features. This technique is time-consuming for the prediction of leukemia. The pathologist’s professional skills and experiences may be affecting this procedure, too. In computer vision, traditional machine learning and deep learning techniques are practical roadmaps that increase the accuracy and speed in diagnosing and classifying medical images such as microscopic blood cells. This paper provides a comprehensive analysis of the detection and classification of acute leukemia and WBCs in the microscopic blood cells. First, we have divided the previous works into six categories based on the output of the models. Then, we describe various steps of detection and classification of acute leukemia and WBCs, including Data Augmentation, Preprocessing, Segmentation, Feature Extraction, Feature Selection (Reduction), Classification, and focus on classification step in the methods. Finally, we divide automated detection and classification of acute leukemia and WBCs into three categories, including traditional, Deep Neural Network (DNN), and mixture (traditional and DNN) methods based on the type of classifier in the classification step and analyze them. The results of this study show that in the diagnosis and classification of acute leukemia and WBCs, the Support Vector Machine (SVM) classifier in traditional machine learning models and Convolutional Neural Network (CNN) classifier in deep learning models have widely employed. The performance metrics of the models that use these classifiers compared to the others model are higher. We propose providing models in detecting and classify acute leukemia and WBCs that use a combination of SVM and CNN classifiers in their classification step to achieve optimum performance metrics." @default.
- W4205127725 created "2022-01-26" @default.
- W4205127725 creator A5002775540 @default.
- W4205127725 creator A5072704310 @default.
- W4205127725 date "2022-01-18" @default.
- W4205127725 modified "2023-10-17" @default.
- W4205127725 title "A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells" @default.
- W4205127725 cites W1159302035 @default.
- W4205127725 cites W1722290647 @default.
- W4205127725 cites W2011503872 @default.
- W4205127725 cites W2030116002 @default.
- W4205127725 cites W2033062769 @default.
- W4205127725 cites W2045888242 @default.
- W4205127725 cites W2076426515 @default.
- W4205127725 cites W2082214172 @default.
- W4205127725 cites W2104095591 @default.
- W4205127725 cites W2170249894 @default.
- W4205127725 cites W2193325189 @default.
- W4205127725 cites W2294798173 @default.
- W4205127725 cites W2551596518 @default.
- W4205127725 cites W2555933387 @default.
- W4205127725 cites W2559768058 @default.
- W4205127725 cites W2587640549 @default.
- W4205127725 cites W2595067526 @default.
- W4205127725 cites W2725970815 @default.
- W4205127725 cites W2736844740 @default.
- W4205127725 cites W2739179243 @default.
- W4205127725 cites W2762113702 @default.
- W4205127725 cites W2768086057 @default.
- W4205127725 cites W2770156338 @default.
- W4205127725 cites W2773107651 @default.
- W4205127725 cites W2783733999 @default.
- W4205127725 cites W2786454292 @default.
- W4205127725 cites W2788565855 @default.
- W4205127725 cites W2794206575 @default.
- W4205127725 cites W2799926361 @default.
- W4205127725 cites W2801148351 @default.
- W4205127725 cites W2801624633 @default.
- W4205127725 cites W2808242482 @default.
- W4205127725 cites W2810323699 @default.
- W4205127725 cites W2871166210 @default.
- W4205127725 cites W2890671308 @default.
- W4205127725 cites W2893154092 @default.
- W4205127725 cites W2898491665 @default.
- W4205127725 cites W2906804827 @default.
- W4205127725 cites W2910206206 @default.
- W4205127725 cites W2922911224 @default.
- W4205127725 cites W2935163427 @default.
- W4205127725 cites W2937755780 @default.
- W4205127725 cites W2947431583 @default.
- W4205127725 cites W2951015619 @default.
- W4205127725 cites W2959123891 @default.
- W4205127725 cites W2991053226 @default.
- W4205127725 cites W2996401939 @default.
- W4205127725 cites W2998367643 @default.
- W4205127725 cites W2998825217 @default.
- W4205127725 cites W3006315341 @default.
- W4205127725 cites W3038276253 @default.
- W4205127725 cites W3041527418 @default.
- W4205127725 cites W3041601928 @default.
- W4205127725 cites W3082931514 @default.
- W4205127725 cites W3111295039 @default.
- W4205127725 cites W3111956305 @default.
- W4205127725 cites W3128462433 @default.
- W4205127725 cites W4211007335 @default.
- W4205127725 cites W4244136745 @default.
- W4205127725 cites W4247209443 @default.
- W4205127725 doi "https://doi.org/10.1007/s11042-022-12108-7" @default.
- W4205127725 hasPublicationYear "2022" @default.
- W4205127725 type Work @default.
- W4205127725 citedByCount "7" @default.
- W4205127725 countsByYear W42051277252022 @default.
- W4205127725 countsByYear W42051277252023 @default.
- W4205127725 crossrefType "journal-article" @default.
- W4205127725 hasAuthorship W4205127725A5002775540 @default.
- W4205127725 hasAuthorship W4205127725A5072704310 @default.
- W4205127725 hasBestOaLocation W42051277252 @default.
- W4205127725 hasConcept C108583219 @default.
- W4205127725 hasConcept C119857082 @default.
- W4205127725 hasConcept C12267149 @default.
- W4205127725 hasConcept C153180895 @default.
- W4205127725 hasConcept C154945302 @default.
- W4205127725 hasConcept C203014093 @default.
- W4205127725 hasConcept C2776863199 @default.
- W4205127725 hasConcept C2778461978 @default.
- W4205127725 hasConcept C34736171 @default.
- W4205127725 hasConcept C41008148 @default.
- W4205127725 hasConcept C52622490 @default.
- W4205127725 hasConcept C71924100 @default.
- W4205127725 hasConcept C81363708 @default.
- W4205127725 hasConcept C89600930 @default.
- W4205127725 hasConcept C95623464 @default.
- W4205127725 hasConceptScore W4205127725C108583219 @default.
- W4205127725 hasConceptScore W4205127725C119857082 @default.
- W4205127725 hasConceptScore W4205127725C12267149 @default.
- W4205127725 hasConceptScore W4205127725C153180895 @default.
- W4205127725 hasConceptScore W4205127725C154945302 @default.
- W4205127725 hasConceptScore W4205127725C203014093 @default.