Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205127975> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4205127975 abstract "Sentiment Analysis or we can say the study of any person’s attitudes or their emotions for an event, discussion on any random thing. It has been evolving over the recent decades; mainly the work done in the past decades is in the area of text sentiment analysis with many text mining methods. But Voice sentimental analysis remains during a growing stage within the research communities. In this paper, we had performed a sentimental analysis on user’s voice to detect the emotions of the users. By using the Librosa python library we will perform speaker discrimination and sentiment analysis. Interpreting the mood of any person is very useful. Like, if computers gain the power to recognize and replying to human non-verbal discussion such as human feelings. In this situation, after recognizing a person’s feelings, the machine can change its own settings in accordance with user’s mood or emotion and preferences." @default.
- W4205127975 created "2022-01-26" @default.
- W4205127975 creator A5072827986 @default.
- W4205127975 date "2021-12-10" @default.
- W4205127975 modified "2023-10-03" @default.
- W4205127975 title "Prediction of Voice Sentiment using Machine Learning Technique" @default.
- W4205127975 cites W1504376199 @default.
- W4205127975 cites W1964613733 @default.
- W4205127975 cites W2099813784 @default.
- W4205127975 cites W2114524997 @default.
- W4205127975 cites W2131305515 @default.
- W4205127975 cites W2136873765 @default.
- W4205127975 cites W2191779130 @default.
- W4205127975 cites W2995115464 @default.
- W4205127975 doi "https://doi.org/10.1109/smart52563.2021.9676221" @default.
- W4205127975 hasPublicationYear "2021" @default.
- W4205127975 type Work @default.
- W4205127975 citedByCount "1" @default.
- W4205127975 countsByYear W42051279752022 @default.
- W4205127975 crossrefType "proceedings-article" @default.
- W4205127975 hasAuthorship W4205127975A5072827986 @default.
- W4205127975 hasConcept C111919701 @default.
- W4205127975 hasConcept C122980154 @default.
- W4205127975 hasConcept C154945302 @default.
- W4205127975 hasConcept C15744967 @default.
- W4205127975 hasConcept C180747234 @default.
- W4205127975 hasConcept C204321447 @default.
- W4205127975 hasConcept C2780733359 @default.
- W4205127975 hasConcept C41008148 @default.
- W4205127975 hasConcept C519991488 @default.
- W4205127975 hasConcept C66402592 @default.
- W4205127975 hasConcept C77805123 @default.
- W4205127975 hasConceptScore W4205127975C111919701 @default.
- W4205127975 hasConceptScore W4205127975C122980154 @default.
- W4205127975 hasConceptScore W4205127975C154945302 @default.
- W4205127975 hasConceptScore W4205127975C15744967 @default.
- W4205127975 hasConceptScore W4205127975C180747234 @default.
- W4205127975 hasConceptScore W4205127975C204321447 @default.
- W4205127975 hasConceptScore W4205127975C2780733359 @default.
- W4205127975 hasConceptScore W4205127975C41008148 @default.
- W4205127975 hasConceptScore W4205127975C519991488 @default.
- W4205127975 hasConceptScore W4205127975C66402592 @default.
- W4205127975 hasConceptScore W4205127975C77805123 @default.
- W4205127975 hasLocation W42051279751 @default.
- W4205127975 hasOpenAccess W4205127975 @default.
- W4205127975 hasPrimaryLocation W42051279751 @default.
- W4205127975 hasRelatedWork W2032533775 @default.
- W4205127975 hasRelatedWork W2074865958 @default.
- W4205127975 hasRelatedWork W2401763093 @default.
- W4205127975 hasRelatedWork W2491204014 @default.
- W4205127975 hasRelatedWork W3015597294 @default.
- W4205127975 hasRelatedWork W3107474891 @default.
- W4205127975 hasRelatedWork W3130924245 @default.
- W4205127975 hasRelatedWork W3133066742 @default.
- W4205127975 hasRelatedWork W3198474835 @default.
- W4205127975 hasRelatedWork W4205127975 @default.
- W4205127975 isParatext "false" @default.
- W4205127975 isRetracted "false" @default.
- W4205127975 workType "article" @default.