Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205136334> ?p ?o ?g. }
- W4205136334 endingPage "381" @default.
- W4205136334 startingPage "365" @default.
- W4205136334 abstract "Free Access References David W. Hosmer, David W. Hosmer University of Massachusetts, School of Public Health and Health Sciences, Department of Public Health, Division of Biostatistics and Epidemiology, Amherst, MASearch for more papers by this authorStanley Lemeshow, Stanley Lemeshow The Ohio State University, College of Public Health, Center for Biostatistics, Columbus, OHSearch for more papers by this authorSusanne May, Susanne May University of California, San Diego, Department of Family & Preventative Medicine, Division of Biostatistics and Bioinformatics, La Jolla, CASearch for more papers by this author Book Author(s):David W. Hosmer, David W. Hosmer University of Massachusetts, School of Public Health and Health Sciences, Department of Public Health, Division of Biostatistics and Epidemiology, Amherst, MASearch for more papers by this authorStanley Lemeshow, Stanley Lemeshow The Ohio State University, College of Public Health, Center for Biostatistics, Columbus, OHSearch for more papers by this authorSusanne May, Susanne May University of California, San Diego, Department of Family & Preventative Medicine, Division of Biostatistics and Bioinformatics, La Jolla, CASearch for more papers by this author First published: 26 February 2008 https://doi.org/10.1002/9780470258019.refsBook Series:Wiley Series in Probability and Statistics AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat REFERENCES Aalen, O.O. (1975). Statistical inference for a family of country processes. Ph.D. Thesis, University of California, Berkeley. Google Scholar Aalen, O.O. (1978). Non parametric inference for a family of counting processes. Annals of Statistics, 6: 701– 726. CrossrefWeb of Science®Google Scholar Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8: 907– 925. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Aalen, O.O. (1993). Further results on the non-parametric linear regression model in survival analysis. Statistics in Medicine, 12: 1509– 1588. Wiley Online LibraryWeb of Science®Google Scholar Aalen, O.O. (1994). Effects of frailty in survival analysis. Statistical Methods in Medical Research, 3: 227– 243. CrossrefCASPubMedGoogle Scholar Agresti, A. (1990). Categorical Data Analysis. John Wiley & Sons, Inc., New York. Google Scholar Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19: 716– 723. CrossrefCASPubMedGoogle Scholar Alioum, A. and Commenges, D. (1996). A proportional hazards model for arbitrarily censored and truncated data. Biometrics, 52: 512– 524. CrossrefCASPubMedWeb of Science®Google Scholar Allison P. (1995) Survival Analysis Using the SAS System: A Practical Guide. SAS Institute Inc., Cary, North Carolina. Web of Science®Google Scholar Allison, P.D. (2001). Missing Data, Sage Publications, Thousand Oaks, CA. Web of Science®Google Scholar Altshuler, B. (1970). Theory for the measurement of competing risks in animal experiments. Math Bioscience, 6: 1– 11. CrossrefGoogle Scholar Ambler, G. and Royston, P. (2001). Fractional polynomial model selection procedures: investigating type I error rate. Journal of Statistical Simulation and Computation, 69: 89– 108. CrossrefWeb of Science®Google Scholar Andersen, P.K. (1992). Repeated assessment of risk factors in survival analysis. Statistical Methods in Medical Research, 1: 297– 315. CrossrefCASPubMedGoogle Scholar Andersen, P.K. and Gill, R.D. (1982) Cox's regression model for counting processes: A large sample study. Annals of Statistics, 10: 1100– 1120. CrossrefWeb of Science®Google Scholar Andersen, P.K., Borgan, Ø., Gill, R.D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, New York. Google Scholar Andersen, P.K., Klein, J.P., Knudsen, K.M., and Tabanera y Palacios, R. (1997). Estimation of variance in Cox's regression model with shared gamma frailties. Biometrics, 53: 1475– 1484. CrossrefCASPubMedWeb of Science®Google Scholar Arjas, E. (1988). A graphical method for assessing goodness-of-fit in Cox's proportional hazards model. Journal of American Statistical Association, 83: 204– 212. CrossrefWeb of Science®Google Scholar Barlow, W.E. and Prentice, R.L. (1988). Residuals for relative risk regression. Biometrics, 75: 65– 74. CrossrefWeb of Science®Google Scholar Barthel, F. M.-S., Babiker, A., Royston, P. and Parmar, M.K.B. (2006) Evaluation of sample size and power for multi-arm survival trials allowing for non-uniform accrual, non-proportional hazards, loss to follow-up and cross-over. Statistics in Medicine, 25: 2521– 2542. Wiley Online LibraryPubMedWeb of Science®Google Scholar Barthel, F. M.-S., Royston, P. and Babiker, A. (2005) A menu driven facility for complex sample size calculation in randomized controlled trials with a survival or binary outcome. Stata Journal, 5: 123– 129. CrossrefWeb of Science®Google Scholar Bendel, R.B. and Afifi, A.A. (1977). Comparison of stopping rules in forward regression. Journal of American Statistical Association, 72: 46– 53. CrossrefWeb of Science®Google Scholar Bhattacharyya, M. and Klein, J.P. (2005) A note on testing in Aalen's additive regression models. Statistics in Medicine, 24: 223– 2240. Wiley Online LibraryWeb of Science®Google Scholar BMDP Statistical Software (1992). BMDP Classic 7.0 for DOS. SPSS, Inc. Chicago. Google Scholar Borgan, Ø. and Langholz, B. (1993). Nonparametric estimation of relative mortality from nested case-control studies. Biometrics, 49: 593– 602. CrossrefCASPubMedWeb of Science®Google Scholar Borgan, Ø. and Langholz, B. (1997). Estimation of excess risk from case-control data using Aalen's linear regression model. Biometrics, 53: 690– 697. CrossrefCASPubMedWeb of Science®Google Scholar Borgan, Ø., Goldstein, L. and Langholz, B. (1995). Methods for the analysis of sampled cohort data in the Cox proportional hazards model. Annals of Statistics, 23: 1749– 1778. CrossrefWeb of Science®Google Scholar Borgan, Ø. and Leistøl. K. (1990). A note on confidence bands for the survival curve based on transformations. Scandanavian Journal of Statistics, 17: 35– 41. Web of Science®Google Scholar Breslow, N.E. (1970). A generalized Kruskal-Wallace test for comparing K samples subject to unequal patterns of censorship. Biometrika, 57: 579– 594. CrossrefWeb of Science®Google Scholar Breslow, N.E. (1974). Covariance analysis of censored survival data. Biometrics, 30: 89– 100. CrossrefCASPubMedWeb of Science®Google Scholar Breslow, N.E. and Day, N.E. (1980). Statistical Methods in Cancer Research. Volume I: The Analysis of Case-Control Studies. Oxford University Press, Oxford, U.K. Google Scholar Breslow, N.E. and Day N.E. (1987). Statistical Methods in Cancer Research. Volume II: The Design and Analysis of Cohort Studies. Oxford University Press, Oxford, U.K. Google Scholar Brookmeyer, R. and Crowley, J.J. (1982). A confidence interval for the median survival time. Biometrics, 38: 29– 41. CrossrefWeb of Science®Google Scholar Bryson, M.C. and Johnson, M.E. (1981). The incidence of monotone likelihood in the Cox model. Technometrics, 23: 381– 384. Web of Science®Google Scholar Cain, K.C. and Lange, N.T. (1984). Approximate case influence for the proportional hazards regression model with censored data. Biometrics, 40: 493– 499. CrossrefCASPubMedWeb of Science®Google Scholar Cain, L.E. and Cole, S. E. (2005). Letter to the Editor on Survival analysis for recurrent event data: an application to childhood diseases. Statistics in Medicine, 25: 1431– 1433. Wiley Online LibraryWeb of Science®Google Scholar Carstensen, B. (1996). Regression models for interval censored data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15: 2177– 2189. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Chappell, R. (1992). A note on linear rank tests and Gill and Schumacher's test of proportionality. Biometrika, 79: 199– 201. CrossrefWeb of Science®Google Scholar Chiriboga, D., Yarzebeski, J., Goldberg, R.J., Gore, J.M. and Alpert, J.S. (1994). Temporal trends (1975–1990) in the incidence and case-fatality rates of primary ventricular fibrillation complicating acute myocardial infarction: a community wide perspective. Circulation, 89: 998– 1003. CrossrefCASPubMedWeb of Science®Google Scholar Chow, S-C., Jun Shao, J. and Wang, H. (2003) Sample Size Calculations in Clinical Research, Taylor & Francis, Boca Raton. CrossrefGoogle Scholar Clayton, D. (1994). Some approaches to the analysis of recurrent event data. Statistical Methods in Medical Research, 3: 244– 262. CrossrefCASPubMedGoogle Scholar Clayton, D.G. and Hills, M. (1993). Statistical Models in Epidemiology, Oxford University Press, Oxford, U.K. Google Scholar Clayton D.G. and Hills M. (1997). Analysis of follow-up studies with Stata 5.0. Stata Technical Bulletin Number 40. Stata Corporation, College Station, TX. Google Scholar Cleveland, W.S. (1993). Visualizing Data, Hobart Press, Summit, NJ. Google Scholar Collett, D. (2002). Modelling Binary Data, Second Edition. Chapman Hall, London, U.K. Google Scholar Collett, D. (2003). Modelling Survival Data in Medical Research Second Edition. Chapman Hall, London, U.K. Google Scholar Commenges, D. and Andersen, P.K. (1995). A score test of homogenity for survival data. Life Time Data Analysis, 1: 145– 160. CrossrefCASPubMedGoogle Scholar Costanza, M.C. and Afifi, A.A. (1979). Comparison of stopping rules in forward stepwise discriminant analysis. Journal of the American Statistical Association, 74: 777– 785. Web of Science®Google Scholar Coviello, V. and Boggess, M. (2004). Cumulative incidence estimation in the presence of competing risks. Stata Journal 4 103– 112. CrossrefGoogle Scholar Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of Royal Statistical Society: Series B, 34: 187– 220. Wiley Online LibraryGoogle Scholar Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman Hall, London, U.K. Google Scholar Cox, D.R. and Snell, E.J. (1968). A general definition of residuals with discussion. Journal of Royal Statistical Society: Series A, 30: 248– 275. Wiley Online LibraryWeb of Science®Google Scholar Crowder, M.J., Kimber, A.C., Smith, R.L. and Sweeting, T.J. (1991). Statistical Analysis of Reliability Data. Chapman Hall, London, U.K. CrossrefGoogle Scholar Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of American Statistical Association, 78: 27– 36. Google Scholar DeGruttola, V. and Lagakos, S.W. (1989). Analysis of doubly-censored survival data with application to AIDS. Biometrics, 45: 1– 12. CrossrefCASPubMedWeb of Science®Google Scholar Dempster, A.P., Laird, N.M. and Rubin, D.R. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society: Series B, 39: 1– 38. Wiley Online LibraryGoogle Scholar Efron, B. (1977). The efficiency of Cox's likelihood function for censored data. Journal of American Statistical Association, 72: 557– 565. Web of Science®Google Scholar Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data Analysis. John Wiley & Sons, Inc., New York. CASGoogle Scholar Evans, M., Hastings, N. and Peacock, B. (1993). Statistical Distributions. 2nd edition. Wiley-Interscience, John Wiley & Sons, Inc., New York. Google Scholar Farrington, C.P. (1996). Interval censored survival data: A generalized linear modeling approach. Statistics in Medicine, 15: 283– 292. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Fleiss, J., Levin, B. and Paik, M.C. (2003) Statistical methods for Rates and Proportions: Third Edition. John Wiley & Sons, Inc., New York Wiley Online LibraryGoogle Scholar Finkelstein, D.M. (1986). A proportional hazards model for interval censored failure time data. Biometrics, 42: 845– 854. CrossrefCASPubMedWeb of Science®Google Scholar Fisher, L.L. (1992). Discussion of Session 1: Clinical trials, survival analysis. Statistics in Medicine, 11: 1881– 1885. Wiley Online LibraryWeb of Science®Google Scholar Fisher L.D. and Lin D.Y. (1999) Time-dependent Covariates in the Cox Proportional-hazards regression model. Annual Review of Public Health, 20: 145– 157. CrossrefCASPubMedWeb of Science®Google Scholar Fleming, T.R. and Harrington, D.P. (1984). Nonparametric estimation of the survival distribution in censored data. Communication in Statistics: Theory and Methods, 13: 2469– 2486. CrossrefWeb of Science®Google Scholar Fleming, T.R. and Harrington, D.P. (1991). Counting Process and Survival Analysis. John Wiley & Sons, Inc., New York. Google Scholar Fleming, T.R., Harrington, D.P. and O'Sullivan, M. (1987). Supremium versions of the logrank and generalized Wilcoxon statistics. Journal of the American Statistical Association, 82: 312– 320. Web of Science®Google Scholar Gehan, E.A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrics, 52: 203– 223. CrossrefPubMedWeb of Science®Google Scholar Gill, R. and Schumacher, M. (1987). A simple test of the proportional hazards assumption. Biometrika, 75: 289– 300. CrossrefWeb of Science®Google Scholar Goldberg, R.J., Gore, J.M., Alpert, J.S. and Dalen, J.E. (1986). Recent changes in the attack rates and survival of acute myocardial infarction (1975–1981): The Worcester Heart Attack Study. Journal of the American Medical Association, 255: 2774– 2779. CrossrefCASPubMedWeb of Science®Google Scholar Goldberg, R.J., Gore, J.M., Alpert, J.S. and Dalen, J.E. (1988). Incidence and case fatality rates of acute myocardial infarction (1975–1984): The Worcester Heart Attack Study. American Heart Journal, 115: 761– 767. CrossrefCASPubMedWeb of Science®Google Scholar Goldberg, R.J., Gore, J.M., Gurwitz, J.H., Alpert, J.S Brady, P., Stohsnitter, W., Chen, Z. and Dalen, J.E. (1989). The impact of age on the incidence and prognosis of initial myocardial infarction: The Worcester Heart Attack Study. American Heart Journal, 117: 543– 549. CrossrefCASPubMedWeb of Science®Google Scholar Goldberg, R.J., Gore, J.M., Alpert, J.S., Osganian, V., de Groot, J., Bade, J., Chen, Z., Frid, D. and Dalen, J. (1991). Cardiogenic shock after acute myocardial infarction: Incidence and mortality from a community wide perspective, 1975–1988. New England Journal of Medicine, 325: 1117– 1122. CrossrefCASPubMedWeb of Science®Google Scholar Goldberg, R.J., Gorak, E.J., Yarzebski, J., Hosmer, D.W., Dalen, P., Gore, J.M. and Dalen, J.E. (1993). A community-wide perspective of gender differences and temporal trends in the incidence and survival rates following acute myocardial infarction and out-of-hospital deaths due to coronary heart disease. Circulation, 87: 1997– 1953. CrossrefGoogle Scholar Goldberg, R.J., Ciu, J., Olendzki, R.D., Spencer, F. Yarzebski, J., Lessard, D. and Gore, J. (2005). Excess body weight, clinical profile, management practices and hospital prognosis in men and women after acute myocardial infarction, American Heart Journal, 151: 1297– 1304. CrossrefPubMedWeb of Science®Google Scholar Grambsch, P.M. and Therneau, T.M. (1994). Proportional hazards tests in diagnostics based on weighted residuals. Biometrika, 81: 515– 526. CrossrefWeb of Science®Google Scholar Grambsch, P.M., Therneau, T.M. and Fleming, T.R. (1995). Diagnostic plots to reveal functional form for covariates in multiplicative intensity models. Biometrics, 51: 1469– 1482. CrossrefCASPubMedWeb of Science®Google Scholar Granger, C.B., Goldberg, R.J., Dabbous, O., Pieper, K.S., Eagle, K.A., Cannon, C.P., Van de Werf, F., Avezum, Á., Goodman, S.G., Flather, M.D., Fox, K.A.A., for the Global Registry of Acute Coronary Events Investigators (2003). Predictors of hospital mortality in the Global Registry of Acute Coronary Events. Archives of Internal Medicine, 163: 2345– 2353. CrossrefPubMedWeb of Science®Google Scholar Gray, R.J. (1992). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association, 87: 942– 951. CrossrefWeb of Science®Google Scholar Greenwood, M. (1926). The natural duration of cancer. Reports on Public Health and Medical Subjects. 33: 1– 26. Her Majesty's Stationery Office, London. PubMedGoogle Scholar Gross, A.J. and Clark, V.A. (1975). Survival Distributions: Reliability Applications in the Biomedical Sciences. John Wiley & Sons, Inc., New York. Google Scholar Grønnesby, J.K. and Borgan, Ø. (1996). A method for checking regression models in survival analysis based on the risk score. Lifetime Data Analysis, 2: 315– 328. CrossrefCASPubMedGoogle Scholar Gutierrez, R.G. Carter, S.L., and Drukker, D.M. (2001). On boundary-value likelihood ratio tests. Stata Technical Bulletin, 60: 15– 18. Web of Science®Google Scholar Hald, A. (1990). A History of Probability and Statistics and Their Applications Before 1750. John Wiley & Sons, Inc., New York. Wiley Online LibraryGoogle Scholar Hall, W.J. and Wellner, J.A. (1980). Confidence bands for a survival curve from censored data. Biometrika, 67: 133– 143. CrossrefWeb of Science®Google Scholar Hall, W.J., Rogers, W.H. and Pregibon, D. (1982). Outliers matter in survival analysis. Rand Corporation Technical Report P-6761. Santa Monica, CAGoogle Scholar Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S. Currier, J. J. Eron, Jr., J. E. Feinberg, H. H. Balfour, Jr., L. R. Deyton, J. A. Chodakewitz and M. A. Fischl, for the AIDS Clinical Trials Group 320 Study Team (1997). A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. New England Journal of Medicine, 337: 725– 33. CrossrefCASPubMedWeb of Science®Google Scholar Harle, O. and Zhou, X-H. (2007) Multiple Imputation: Review of theory, implementation and software. Statistics in Medicine, 26: 3057– 3077. Wiley Online LibraryPubMedWeb of Science®Google Scholar Harrell, F.E. (2001). Regression Modeling Strategies with Applications to Linear Models, Logistic Regression and Survival Analysis, Springer, New York. CrossrefGoogle Scholar Harrell, F.E., Lee, K.L. and Mark, D.B. (1996). Tutorial in biostatistics. Multivariable models: issues in developing models, evaluating assumptions and adequacy and measuring and reducing errors. Statistics in Medicine, 15: 361– 387. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Harrington, D.P. and Fleming, T.R. (1982). A class of rank test procedures for censored survival data. Biometrika, 69: 553– 566. CrossrefWeb of Science®Google Scholar Henderson, R. and Milner, A. (1991). Aalen plots under proportional hazards. Applied Statistics, 40: 401– 409. Wiley Online LibraryWeb of Science®Google Scholar Horton, N.J. and Lipsitz, S.R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing values. The American Statistician, 55: 244– 254. CrossrefWeb of Science®Google Scholar Hosmer, D.W. and Lemeshow, S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data, John Wiley & Sons, Inc., New York. Google Scholar Hosmer, D.W. and Lemeshow, S. (2000). Applied Logistic Regression, Second Edition. John Wiley & Sons, Inc., New York. Wiley Online LibraryGoogle Scholar Hosmer, D.W. and Royston, P. (2002) Using Aalen's linear hazards model to investigate time-varying effects in the proportional hazards model. Stata Journal, 2: 331– 350. Google Scholar Hougaard, P. (1995). Frailty models for survival data. Lifetime Data Analysis, 1: 255– 274. CrossrefCASPubMedGoogle Scholar Hougaard, P. (2000). Analysis of Multivariate Survival Data, Springer, New York. CrossrefGoogle Scholar Huffler, F.W. and McKeague, I.W. (1991). Weighted least squares estimation for Aalen's additive risk model. Journal of the American Statistical Association, 86: 114– 129. Google Scholar Jenkins, S.P. (1997). Discrete time proportional hazards regression. Stata Technical Bulletin, 39: 17– 32. Google Scholar Jewell, N.P. (1994). Non-parametric estimation and doubly-censored data: General idea and applications to AIDS. Statistics in Medicine, 13: 2081– 2095. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Johnson, N.L. and Kotz, S. (1997). Discrete Multivariate Distributions. John Wiley & Sons, Inc., New York. Google Scholar Kabat-Zinn, J., Wheeler, E., Light, T., Skillings, A., Scharf, M.J., Cropley, T.G., Hosmer, D. and Bernhard, J.D. (1998). Influence of a mindfulness meditation-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA). Psychosomatic Medicine, 60: 625– 632. CrossrefCASPubMedWeb of Science®Google Scholar Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data. Second Edition. John Wiley & Sons, Inc., New York. Wiley Online LibraryGoogle Scholar Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53: 457– 481. CrossrefCASWeb of Science®Google Scholar Kelly, P.J. and Lim, L.L-Y. (2000). Survival analysis for recurrent event data: an application of Childhood infectious Diseases. Statistics in Medicine, 19: 13– 33. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kim, M.Y., DeGruttola, V.G. and Lagakos, S. (1993). Analyzing doubly censored data with covariates, with application to AIDS. Biometrics, 45: 1– 11. Google Scholar Klein, J.P. and Moeschberger, M.L. (2003). Survival Analysis Techniques for Censored and Truncated Data: Second Edition. Springer-Verlag, New York. Google Scholar Kleinbaum, D.G. and Klien, M. (2005) Survival Analysis: A Self-Learning Text. Second Edition. Springer-Verlag, New York. Google Scholar Kleinbaum, D.G., Kupper, L.L., Muller, K.E. and Nizam, A. (1998). Applied Regression Analysis and Multivariable Methods. 3rd edition. Duxbury Press. Pacific Grove, CA. Google Scholar Kuk, A.Y.C. (1984). All subsets regression in a proportional hazards model. Biometrika, 71: 587– 592. CrossrefWeb of Science®Google Scholar Langholz, B. and Borgan, Ø. (1995). Counter-matching: A stratified nested case-control sampling method. Biometrika, 82: 69– 79. CrossrefWeb of Science®Google Scholar Lawless, J.F. (2003). Statistical Models and Methods for Lifetime Data Second Edition. John Wiley & Sons, Inc., New York. Google Scholar Lawless, J.F. and Singhal, K. (1978). Efficient screening of non-normal regression models. Biometrics, 34: 318– 327. CrossrefWeb of Science®Google Scholar Le, C.T. (1997). Applied Survival Analysis. John Wiley & Sons, Inc., New York. Google Scholar Lee, E.T. and Wang J.W. (2003). Statistical Methods for Survival Data Analysis. Third Edition, John Wiley & Sons, Inc., New York. Wiley Online LibraryGoogle Scholar Liang, K.Y. and Zeger, S.L. (1986a). Longitudinal data analysis, using generalized linear models. Biometrika, 73: 13– 22. CrossrefWeb of Science®Google Scholar Liang, K.Y. and Zeger, S.L. (1986b). Longitudinal data analysis for discrete and continuous models. Biometrics, 42: 121– 130. CrossrefPubMedWeb of Science®Google Scholar Liang, K.Y., Self, S.G., Bandeen-Roche, K.J. and Zeger, S. (1995). Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis, 1: 403– 416. CrossrefCASPubMedGoogle Scholar Lin, X. and Wang, H. (2004). A new testing approach for comparing the overall homogeneity of survival curves. Biometrical Journal, 46: 489– 496. Wiley Online LibraryWeb of Science®Google Scholar Lin, D.Y. and Wei, L.J. (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 84: 1074– 1078. CrossrefWeb of Science®Google Scholar Lin, D.Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model, Biometrika, 81: 61– 71. CrossrefWeb of Science®Google Scholar Lin, D.Y., Wei, L.J. and Ying, Z. (1993). Checking the Cox model with cumulative sums of Martingale based residuals. Biometrika, 80: 557– 572. CrossrefWeb of Science®Google Scholar Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley, New York. Wiley Online LibraryGoogle Scholar Lunn, M. and McNeil, D. (1995). Applying the Cox regression to competing risks. Biometrics 51: 524– 532. CrossrefCASPubMedWeb of Science®Google Scholar McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. 2nd edition. Chapman Hall, London, U.K. CrossrefCASGoogle Scholar McCusker, J., Vickers-Lahti, M., Stoddard, A.M., Hindin, R., Bigelow, C., Garfield, F., Frost, R., Love, C. and Lewis, B.F. (1995). The effectiveness of alternative planned durations of residential drug abuse treatment. American Journal of Public Health, 85: 1426– 1429. CrossrefCASPubMedWeb of Science®Google Scholar McCusker, J., Bigelow, C., Frost, R., Garfield, F., Hindin, R., Vickers-Lahti, M. and Lewis, B.F. (1997a). The effects of planned duration of residential drug abuse treatment on recovery and HIV risk behavior. American Journal of Public Health, 87: 1637– 1644. CrossrefCASPubMedWeb of Science®Google Scholar McCusker, J., Bigelow, C., Vickers-Lahti, M., Spotts, D., Garfield, F. and Frost, R. (1997b). Planned duration of residential drug abuse treatment: efficacy versus treatment. Addiction, 92: 1467– 1478. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar McKeague, I.W. and Sasieni, P.D. (1994). A partly parametric additive risk model. Biometrika, 81: 501– 514. CrossrefWeb of Science®Google Scholar Makuch, R.W. (1982). Survival curve estimation using covariates. Journal of Chronic Diseases, 3: 437– 443. CrossrefCASWeb of Science®Google Scholar Mallows, C. (1973). Some Comments on Cp. Technometrics, 15: 661– 676. CrossrefWeb of Science®Google Scholar Mann, N., Schaefer, R.E. and Singparwalla, N.D. (1974). Methods for Statistical Analysis of Reliability and Life Data. John Wiley & Sons, Inc., New York. Google Scholar Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50: 163– 170. CASPubMedGoogle Scholar Marubini, E. and Valsecchi, M.G. (1995). Analyzing Survival Data from Clinical Trials and Observational Studies. John Wiley & Sons, Ltd., Chichester, U.K. Google Scholar MathType5: Mathematical Equation Editor (2004). Design Sciences, Inc. Long Beach, CA 90803. Google Scholar Mau, J. (1986). On a graphical method for the detection of time-dependent effects of covariants in survival data. Applied Statistics, 35: 245– 255. Wiley Online LibraryWeb of Science®Google Scholar May, S. and Hosmer, D.W. (1998). A simplified method for calculating a goodness-of-fit test for the proportional hazards model. Lifetime Data Analysis, 4: 109– 120. CrossrefCASPubMedWeb of Science®Google Scholar May, S. and Hosmer, D. W. (2004). A cautionary note on the use of the Grønnesby and Borgan goodness-of-fit test for the Cox proportional hazards model. Lifetime Data Analysis, 10: 283– 291. CrossrefPubMedWeb of Science®Google Scholar Mickey, J. and Greenland, S. (1989). A study of the impact of confounder selection criteria on effect estimation. American Journal of Epidemiology, 129: 125– 137. CrossrefCASPubMedWeb of Science®Google Scholar Miller, R.G. (1981). Survival Analysis. John Wiley & Sons, Inc., New York. Google Scholar Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1: 27– 52. CrossrefGoogle Scholar Nelson, W. (1972). Theory and application of hazard plotting for censored failure data. Technometrics, 14: 945– 965. Web of Science®Google Scholar Nelson, W. (2004). Applied Life Data Analysis, Second Edition. John Wiley & Sons, Inc., New York. Google Scholar Nelson, W. (1990). Accelerated Testing, Statistical Models, Test Plans, and Data Analysis. John Wiley & Sons, Inc., New York. Google Scholar Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika 78: 691– 692. CrossrefWeb of Science®Google Scholar Neuhaus, J. (1992). Statistical methods for longitudinal and clustered designs with binary outcomes. Statistical Methods in Medical Research, 1: 249– 273. CrossrefCASPubMedGoogle Scholar Nielsen, G.G., Gill, R.D., Andersen, P.K. and Sørensen, T.I.A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19: 25– 43. Web of Science®Google Scholar Ng'andu, N.H. (1997). An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox's model. Statistics in Medicine, 16: 611– 626. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Oakes, D. (1981). Survival times: Aspects of partial likelihood (with discussion). International Statistical Review, 49: 235– 264. CrossrefWeb of Science®Google Scholar Pintilie, M. (2006). Competing Risks, A Practical Perspective. John Wiley & Sons Ltd. Chichester, West Sussex, England. Wiley Online LibraryGoogle Scholar O'Quigley, J. and Pessione, F. (1989). Score tests for homogenity of regression effect in the proportional hazards model. Biometrics, 45: 135– 144. CrossrefCASPubMedWeb of Science®Google Scholar O'Quigley. J. and J. Stare (2002) Proportional hazards models with frailties and random effects. Statistics in Medicine, 21: 3219– 3233. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar O'Quigley, J., R. Xu, and J. Stare (2005) Explained randomness in proportional hazards models. Statistics in Medicine, 24: 479– 489. Wiley Online LibraryPubMedWeb of Science®Google Scholar Parmar, M.K.B. and Machin, D. (1995). Survival Analysis: A Practical Approach. John Wiley & Sons, Ltd., Chichester, U.K. Google Scholar Parzen, M. and Lipsitz, S. R. (1999) A global goodness-of-fit statistic for Cox regression models,. Biometrics, 55: 580– 584. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Peterson, A.V. (1977). Expressing the Kaplan-Meier estimation as a function of empirical subsurvival functions. Journal of the American Statistical Association, 72: 854– 858. CrossrefWeb of Science®Google Scholar Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariance test procedures (with discussion). Journal of the Royal Statistical Association. Series A, 135: 185– 206. Wiley Online LibraryWeb of Science®Google Scholar Pettitt, A.N. and Bin Daud, L. (1989). Case-weighted measures of influence for proportional hazards regression. Applied Statistics, 38: 51– 67. Wiley Online LibraryWeb of Science®Google Scholar Pettitt, A.N. and Bin Daud, L. (1990). Investigating time dependence in Cox proportional hazards model. Applied Statistics, 39: 313– 329. Wiley Online LibraryWeb of Science®Google Scholar Pickels, A., Crouchley, R., Simonoff, E.L., Meyer, J., Rutter, M., Hewitt, J. and Silbery, J. (1994). Survival models for developmental genetic data: Age at onset of puberty and antisocial behavior in twins. Genetic Epidemiology, 11: 155– 170. Wiley Online LibraryPubMedWeb of Science®Google Scholar Prentice R.L. (1978). Linear rank tests with right censored data. Biometrika, 65: 167– 179, CrossrefWeb of Science®Google Scholar Correction Biometrika, 70: 304 (1983). Google Scholar Prentice, R.L. and Gloecker, L.A. (1978). Regression analysis of grouped survival data with application to breast cancer data. Biometrics, 34: 57– 67. CrossrefCASPubMedWeb of Science®Google Scholar Prentice, R.L., Williams, J. and Peterson, A.V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68: 373– 379. CrossrefWeb of Science®Google Scholar Quantin, C, Moreau, T., Asselain, B., Maccario, J. and Lellouch, J. (1996). A regression survival model for testing the proportional hazards hypothesis. Biometrics, 52: 874– 885. CrossrefCASPubMedWeb of Science®Google Scholar Rothman, K.J. and Greenland, S. (1998). Modern Epidemiology. 3rd edition. Lippincott-Raven., Philadelphia, PA. Google Scholar Royston, P. (2001). Flexible parametric alternatives to the Cox model and more. The Stata Journal, 1 (1): 1– 28. Google Scholar Royston, P. (2004). Multiple imputation of missing values. The Stata Journal 4 (3): 227– 241. CrossrefGoogle Scholar Royston, P. (2005a). Multiple imputation of missing values: Update. The Stata Journal 5 (2): 188– 201. Web of Science®Google Scholar Royston, P. (2005b) Multiple imputation of missing values: Update of ice. The Stata Journal 5 (4): 527– 536. Google Scholar Royston, P. (2006). Explained variation for survival models. The Stata Journal, 6 (1): 83– 96. CrossrefWeb of Science®Google Scholar Royston, P. and Altman, D.G. (1994). Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling (with discussion). Applied Statistics, 43: 429– 467. Wiley Online LibraryWeb of Science®Google Scholar Reprinted in Stata Technical Bulletin Reprints, 8: 123– 132. Google Scholar Royston, P. and Ambler, G. (1998). Multivariable fractional polynomials, Stata Technical Bulletin, 43: 24– 32. Google Scholar Royston, P. and Sauerbrei, W. (2007). Improving the robustness of fractional polynomials by preliminary covariate transformation; A pragmatic approach. Computational Statistics & Data Analysis, 51: 4240– 4253. CrossrefWeb of Science®Google Scholar Rubin, D.B. (1976). Inference and Missing data, Biometrika 63: 581– 592. CrossrefWeb of Science®Google Scholar Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons. Inc., New York Wiley Online LibraryGoogle Scholar Ryan, T. (1997). Modern Regression Methods. John Wiley & Sons, Inc., New York. Google Scholar SAS Institute Inc. (2003). SAS/STATr̀, SAS Institute, Cary, NC. Google Scholar SAS Institute Inc. (2004). Base SASr̀ 9.1 Procedures Guide. Cary, NC: SAS Institute Inc. Google Scholar SAS Institute Inc. (2004). SAS/STATr̀ 9.1 User's Guide. Cary, NC: SAS Institute Inc. Google Scholar SAS Institute Inc. (2004). Getting Started with the SASr̀ Power and Sample Size Application. Cary, NC: SAS Institute Inc. Google Scholar Sauerbrei, W., Meier-Hirmer, C., Benner, A. and Royston, P. (2006). Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs. Computational Statistics and Data Analysis, 50: 3464– 3485. CrossrefWeb of Science®Google Scholar Sauerbrei, W and Royston, P. (1999) Building multivariable prognostic and diagnostic models: transformation of the predictors using fractional polynomials. Journal of the Royal Statistical Society Series A, 162 part 1, 71– 94. Wiley Online LibraryWeb of Science®Google Scholar Savage, I.R. (1956). Contributions to the theory of rank-order statistics — the two sample case. Annals of Mathematical Statistics, 27: 590– 615. CrossrefWeb of Science®Google Scholar Schafer, J.L. (1997), Analysis of Incomplete Multivariate Data, Chapman & Hall, New York. CrossrefWeb of Science®Google Scholar Schafer, J.L. (1999), Multiple imputation: A primer, Statistical Methods in Medical Research, 8: 3– 15 CrossrefCASPubMedWeb of Science®Google Scholar Schafer, J.L. and Graham, J.W. (2002), Missing data: Our View of the State of the Art, Phychological Methods, 7: 147– 177. CrossrefPubMedWeb of Science®Google Scholar Schmoor, C. Olschweski, M. and Schumacher, M. (1996). Randomized and nonrandomized patients in clinical trials: experiences with comprehensive cohort studies. Statistics in Medicine, 15: 263– 271. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Schemper, M. and Stare, J. (1996). Explained variation in survival analysis. Statistics in Medicine, 15: 1999– 2012. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Schoenfeld, D. (1980). Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika, 67: 145– 153. CrossrefWeb of Science®Google Scholar Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69: 239– 241. CrossrefPubMedWeb of Science®Google Scholar Schoenfeld, D. (1983) Sample-size formula for the proportional-hazards regression model. Biometrics, 39: 499– 503. CrossrefCASPubMedWeb of Science®Google Scholar Schumacher, M. Bastert, G., Bojar, H., Hübner, K., Olschweski M., Sauerbrei, W. Schmoor, C., Beyerle, C. Newmann,, R.L.A. and Rauschecker, H.F. (1994). Randomized 2 × 2 trail evaluating hormonal treatment and the duration of chemotherapy in node positive beast cancer patients. Journal of Clinical Oncology, 12: 2086– 2093 CrossrefCASPubMedWeb of Science®Google Scholar StataCorp (2005). Stata Statistical Software: Release 9.0,. Stata Corporation, College Station, TX. Google Scholar Sun, J. (2006). The Statistical Analysis of Interval-censored Failure Time Data, Springer, New York. Google Scholar Tarone, R.E. and Ware, J. (1977). On distribution free tests of the equality of survival distributions. Biometrika, 64: 156– 160. CrossrefWeb of Science®Google Scholar The 3C Study Group (2003). Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology: 22: 316– 325 CrossrefPubMedWeb of Science®Google Scholar Therneau, T.M. and Grambsch, P.M (2000). Modeling Survival Data: Extending the Cox Model. Springer, New York. CrossrefGoogle Scholar Therneau, T.M., Grambsch, P.M. and Fleming, T.R. (1990). Martingale-based residuals for survival models. Biometrika, 77: 147– 160. CrossrefWeb of Science®Google Scholar Thomsen, B.L., Keiding, N. and Altman, D.G. (1991). A note on the calculation of expected survival, illustrated by the survival of liver transplant patients. Statistics in Medicine, 10: 733– 738. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Tsiatis, A.A. (1980). A note on a goodness-of-fit test for the logistic regression model. Biometrika, 67: 250– 251. Web of Science®Google Scholar Van Buuren, S. Boshuizen, H.C. and Knook, D.L. (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 18: 681– 694. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Vaupel, J.W., Manton, K.G. and Stallard, E. (1979). The impact of heterogenity in individual frailty on the dynamics of mortality. Demography, 16: 439– 454. CrossrefCASPubMedWeb of Science®Google Scholar Ware, J.H. and DeMets, D.L. (1976). Reanalysis of some baboon descent data. Biometrics, 32: 459– 463. CrossrefCASPubMedWeb of Science®Google Scholar Wei, L.J. (1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11: 1871– 1879. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Wei, L.J., Lin, D.Y. and Weissfeld (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association, 84: 1065– 1073. CrossrefWeb of Science®Google Scholar White, H. (1980). A heteroskedasticity consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrika, 48: 817– 838. CrossrefCASWeb of Science®Google Scholar White, H. (1982). Maximum likelihood estimation of misspecified models. Economterika, 50: 1– 26. CrossrefPubMedWeb of Science®Google Scholar Yashin, A.I., Vaupel, J.W. and Jachine, I.A. (1995). Correlated individual frailty: an advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5: 145– 149. CrossrefCASPubMedGoogle Scholar Yuan, S.-Sh. (1993). Prediction of length of oxygen use in BPD babies, Masters Thesis, School of Public Health, University of Massachusetts, Amherst, MA. Google Scholar Zahl, P.H. and Tretli S. (1997). Long-term survival of breast cancer patients in Norway by age and clinical stage. Statistics in Medicine, 13: 1435– 1450. Wiley Online LibraryGoogle Scholar Zhou, M. (2001). Understanding the Cox regression models with time-change covariates. The American Statistician, 55: 153– 155. CrossrefWeb of Science®Google Scholar Applied Survival Analysis: Regression Modeling of Time‐to‐Event Data, Second Edition ReferencesRelatedInformation" @default.
- W4205136334 created "2022-01-26" @default.
- W4205136334 date "2008-02-26" @default.
- W4205136334 modified "2023-09-28" @default.
- W4205136334 title "References" @default.
- W4205136334 cites W1498499345 @default.
- W4205136334 cites W1519553794 @default.
- W4205136334 cites W1570622790 @default.
- W4205136334 cites W1581566538 @default.
- W4205136334 cites W1593493925 @default.
- W4205136334 cites W1852065298 @default.
- W4205136334 cites W1964724040 @default.
- W4205136334 cites W1966714873 @default.
- W4205136334 cites W1972843078 @default.
- W4205136334 cites W1973954680 @default.
- W4205136334 cites W1977247044 @default.
- W4205136334 cites W1978136073 @default.
- W4205136334 cites W1978795821 @default.
- W4205136334 cites W1979410288 @default.
- W4205136334 cites W1979816698 @default.
- W4205136334 cites W1983476118 @default.
- W4205136334 cites W1985732394 @default.
- W4205136334 cites W1985851580 @default.
- W4205136334 cites W1986705681 @default.
- W4205136334 cites W1988262403 @default.
- W4205136334 cites W1989979925 @default.
- W4205136334 cites W1990631037 @default.
- W4205136334 cites W1990681166 @default.
- W4205136334 cites W1992464801 @default.
- W4205136334 cites W1994670953 @default.
- W4205136334 cites W1997403101 @default.
- W4205136334 cites W1999948754 @default.
- W4205136334 cites W2001180249 @default.
- W4205136334 cites W2002295231 @default.
- W4205136334 cites W2002453095 @default.
- W4205136334 cites W2003199637 @default.
- W4205136334 cites W2003695698 @default.
- W4205136334 cites W2003733207 @default.
- W4205136334 cites W2006345809 @default.
- W4205136334 cites W2009273094 @default.
- W4205136334 cites W2012658469 @default.
- W4205136334 cites W2012980742 @default.
- W4205136334 cites W2013086923 @default.
- W4205136334 cites W2013345490 @default.
- W4205136334 cites W2013504223 @default.
- W4205136334 cites W2014315605 @default.
- W4205136334 cites W2016294184 @default.
- W4205136334 cites W2019082817 @default.
- W4205136334 cites W2022956277 @default.
- W4205136334 cites W2022993864 @default.
- W4205136334 cites W2024968826 @default.
- W4205136334 cites W2031330193 @default.
- W4205136334 cites W2034948055 @default.
- W4205136334 cites W2038638511 @default.
- W4205136334 cites W2040490736 @default.
- W4205136334 cites W2041493922 @default.
- W4205136334 cites W2042844758 @default.
- W4205136334 cites W2042864731 @default.
- W4205136334 cites W2046119556 @default.
- W4205136334 cites W2048852640 @default.
- W4205136334 cites W2051526869 @default.
- W4205136334 cites W2052464909 @default.
- W4205136334 cites W2056124784 @default.
- W4205136334 cites W2056386726 @default.
- W4205136334 cites W2057120737 @default.
- W4205136334 cites W2059104151 @default.
- W4205136334 cites W2063384143 @default.
- W4205136334 cites W2063695746 @default.
- W4205136334 cites W2070449502 @default.
- W4205136334 cites W2073023604 @default.
- W4205136334 cites W2074671977 @default.
- W4205136334 cites W2075909642 @default.
- W4205136334 cites W2076395872 @default.
- W4205136334 cites W2078692075 @default.
- W4205136334 cites W2079708060 @default.
- W4205136334 cites W2080373387 @default.
- W4205136334 cites W2084644495 @default.
- W4205136334 cites W2085107973 @default.
- W4205136334 cites W2088239637 @default.
- W4205136334 cites W2089208698 @default.
- W4205136334 cites W2089998734 @default.
- W4205136334 cites W2092648747 @default.
- W4205136334 cites W2094997729 @default.
- W4205136334 cites W2095323816 @default.
- W4205136334 cites W2099620796 @default.
- W4205136334 cites W2100358124 @default.
- W4205136334 cites W2102176311 @default.
- W4205136334 cites W2103018859 @default.
- W4205136334 cites W2105609213 @default.
- W4205136334 cites W2108606586 @default.
- W4205136334 cites W2108818539 @default.
- W4205136334 cites W2113559481 @default.
- W4205136334 cites W2114198397 @default.
- W4205136334 cites W2118502261 @default.
- W4205136334 cites W2123162799 @default.
- W4205136334 cites W2127528815 @default.
- W4205136334 cites W2127841934 @default.
- W4205136334 cites W2129900854 @default.