Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205174633> ?p ?o ?g. }
- W4205174633 endingPage "547" @default.
- W4205174633 startingPage "517" @default.
- W4205174633 abstract "Free Access References Alexander F. Vakakis, Alexander F. Vakakis Department of Mechanical and Industrial Engineering, University of Illinois at Urbana--Champaign, Urbana, IL 61801Search for more papers by this authorLeonid I. Manevitch, Leonid I. Manevitch Institute of Chemical Physics, Russian Academy of Sciences, Moscow, RussiaSearch for more papers by this authorYuri V. Mlkhlin, Yuri V. Mlkhlin Department of Applied Mathematics, Kharkov Polytechnic University, Kharkov, UkraineSearch for more papers by this authorValery N. Pilipchuk, Valery N. Pilipchuk Department of Applied Mathematics, Ukrainian State Chemical and Technological University, Dnepropetrovsk, UkraineSearch for more papers by this authorAlexandr A. Zevin, Alexandr A. Zevin Transmag Research Institute, Ukrainian Academy of Sciences, Dnepropetrovsk, UkraineSearch for more papers by this author Book Author(s):Alexander F. Vakakis, Alexander F. Vakakis Department of Mechanical and Industrial Engineering, University of Illinois at Urbana--Champaign, Urbana, IL 61801Search for more papers by this authorLeonid I. Manevitch, Leonid I. Manevitch Institute of Chemical Physics, Russian Academy of Sciences, Moscow, RussiaSearch for more papers by this authorYuri V. Mlkhlin, Yuri V. Mlkhlin Department of Applied Mathematics, Kharkov Polytechnic University, Kharkov, UkraineSearch for more papers by this authorValery N. Pilipchuk, Valery N. Pilipchuk Department of Applied Mathematics, Ukrainian State Chemical and Technological University, Dnepropetrovsk, UkraineSearch for more papers by this authorAlexandr A. Zevin, Alexandr A. Zevin Transmag Research Institute, Ukrainian Academy of Sciences, Dnepropetrovsk, UkraineSearch for more papers by this author First published: 31 July 1996 https://doi.org/10.1002/9783527617869.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat References Aceves, A.B., and Wabnitz, S. (1993). Multisoliton-like solutions of wave propagation in periodic nonlinear structures. In Nonlinear Processes in Physics, A.S. Fokas, D.J. Kaup, A.C. Newell, and V.E. Zakharov (eds.), Springer Verlag, Berlin and New York. Google Scholar Achong, A. (1996). The steelpan as a system of nonlinear mode localized oscillators, part I: Theory, simulations, experiments and bifurcations, J. Sound Vib. (preprint). Google Scholar Anand, G. (1972). Natural modes of a coupled nonlinear system, Int. J. Nonlinear Mech., 7, 81– 91. CrossrefGoogle Scholar Anderson, P.W. (1958). Absence of diffusion in certain random lattices, Phys. Rev., 109 (5), 1492– 1505. CrossrefCASWeb of Science®Google Scholar Anderson, P.W. (1978). Localized moments and localized states, Rev. Modern Phys., 50 (2), 191– 201. CrossrefCASWeb of Science®Google Scholar Anderson, P.W. (1985). The question of classical localization. Theory or white paint? Phil. Mag. B, 52 (3), 505– 509. CrossrefWeb of Science®Google Scholar Anderson, P.W. (1994). A Career in Theoretical Physics, World Scientific, Singapore. CrossrefGoogle Scholar Anderson, P.W., Thoules, D.J., Abrahams, E., and Fisher, D.S. (1980). New method for a scaling theory of localization, Phys. Rev. B, 22 (8). CrossrefWeb of Science®Google Scholar Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics, Springer Verlag, Berlin, Heidelberg and New York. CrossrefGoogle Scholar Asano, N., and Taniuti, T. (1969). Perturbation method for a nonlinear wave modulation II, J. Math. Phys., 10 (11), 2020– 2024. CrossrefWeb of Science®Google Scholar Aubrecht, J.A.S. (1994). Analytical and Experimental Nonlinear Mode Localization in Continuous Systems, MSc Thesis, University of Illinois. Urbana, IL. Google Scholar Aubrecht, J.A.S., Vakakis, A.F., Tsao, T.C., and Bentsman, J. (1996). Experimental study of nonlinear transient motion confinement in a system of coupled beams, J. Sound Vib. (in press). Google Scholar Auld, B. (1961). On the stability of the linearly-related modes of certain nonlinear two-degree-of-freedom systems, J. Appl. Mech., 30, 635– 636. CrossrefGoogle Scholar Baker, G.A., and Graves-Morris, P. (1981). Padé Approximates, Addison-Wesley, New York. Google Scholar Baluni, V., and Willemsen, J. (1985). Transmission of acoustic waves in a random layered medium, Phys. Rev. A, 31 (5). CrossrefPubMedWeb of Science®Google Scholar Bateman, H., and Erdelyi, A. (1952). Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York. Google Scholar Bathe, K.J. (1982). Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey. Google Scholar Bejarano, D., and Sanchez, M. (1988). Generalized exponential, circular and hyperbolic functions for nonlinear wave equations, J. Math. Phys., 29 (8), 1847– 1853. CrossrefWeb of Science®Google Scholar Bejarano, D., and Sanchez, M. (1989). Generalized Fourier series for nonlinear systems, J. Sound Vib., 134 (2), 333– 341. CrossrefWeb of Science®Google Scholar Bellman, R. (1960). Introduction to Matrix Analysis, McGraw-Hill, New York. Google Scholar Bendiksen, O.O. (1987). Mode localization phenomena in large space structures, AIAA J., 25 (9), 1241– 1248. CrossrefWeb of Science®Google Scholar Bennet, J.A., and Eisley, J.Z. (1970). A multi-mode approach to nonlinear beam vibration, AIAA J., 8, 734– 739. CrossrefWeb of Science®Google Scholar Blechman, I.I. (1971). Synchronization in Dynamical Systems. Nauka, Moscow. (in Russian). Google Scholar Bluman, G.W., and Kumei, S. (1989). Symmetries and Differential Equations, Springer Verlag, Berlin and New York. CrossrefGoogle Scholar Bouzit, D., and Pierre, C. (1993). Localization of vibration in disordered multi-span beams with damping. In Structural Dynamics of Large Scale and Complex Systems, ASME Publication DE-Vol. 59, Proc. 14th Biennial Conf. on Mechanical Vibration and Noise, Albuquerque, New Mexico, Sept. 19–22. Google Scholar Boivin, N., Pierre, C., and Shaw, S.W. (1993). Nonlinear normal modes, invariance, and modal dynamics approximations of nonlinear systems. In Nonlinear Vibrations, ASME Publication DE-Vol. 54, Proc. 14th Biennial Conf. on Mecahnical Vibration and Noise, Albuquerque, New Mexico, Sept. 19–22. Google Scholar Bogoliubov, N., and Mitropolsky, Y. (1961). Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York. Google Scholar Brown, W.G. (1993). Buffeting response of a bladed disc assembly. Proc. 11th International Modal Analysis Conference (IMAC), Orlando, Florida, February 1–4. Google Scholar Byrd, P.F., and Friedman, M.D. (1954). Handbook of Elliptic Integrals for Engineers and Physicists, Springer Verlag, New York. CrossrefGoogle Scholar Carr, J. (1981). Applications of Center Manifold Theory, Springer Verlag, New York. CrossrefGoogle Scholar Caughey, T.K., and O'Kelly, M.E.J. (1965). Classical normal modes in damped linear dynamic systems, J. Appl. Mech., 32, 583– 589. CrossrefWeb of Science®Google Scholar Caughey, T.K., and Vakakis, A.F. (1991). A method for examining steady state solutions of forced discrete systems with strong nonlinearities, Int. J. Nonlinear Mech., 26 (1), 89– 103. CrossrefWeb of Science®Google Scholar Caughey, T.K., Vakakis, A.F., and Sivo, J. (1990). Analytic study of similar normal modes and their bifurcations in a class of strongly nonlinear systems, Int. J. Nonlinear Mech., 25 (5), 521– 533. CrossrefWeb of Science®Google Scholar Chen, J.C., and Babcock, C.D. (1975), Nonlinear vibration of cylindrical shells, AIAA J., 13, 868– 876. CrossrefWeb of Science®Google Scholar Chi, C.C., and Rosenberg, R.M. (1985). On damped nonlinear dynamic systems with many degrees of freedom, Int. J. Nonlinear Mech., 20 (5/6), 371– 384. CrossrefWeb of Science®Google Scholar Child, M.S. (1993). Nonlinearity and chaos in atoms and molecules. In The Nature of Chaos, Tom Mullin (Ed.), Oxford University Press, Oxford, UK. Google Scholar Child, M.S., and Lawton, R.T. (1982). Local mode degeneracies in the vibrational spectrum of water, Chem. Phys. Lett., 87, p. 217. CrossrefCASWeb of Science®Google Scholar Clarkson, B.L. (1972). Estimates of the response of box type structures to acoustic loading, Proc. AGARD Symposium on Acoustic Fatigue, Toulouse, France. Google Scholar Clarkson, B.L., and Mead, D.J. (1973). High frequency vibration of aircraft structures, J. Sound Vib., 28 (3), 487– 504. CrossrefWeb of Science®Google Scholar Cooke, C., and Struble, R. (1966). On the existence of periodic solutions and normal mode vibrations of nonlinear systems, Quart. Appl. Math., 24 (3), 177– 193. CrossrefWeb of Science®Google Scholar Cornwell, P.J., and Bendiksen, O.O. (1989). Localization of vibrations in large space reflectors, AIAA J., 27 (2), 219– 226. CrossrefWeb of Science®Google Scholar Crespo Da Silva, M.R.M. (1991). Equations for nonlinear analysis of 3D motions of beams, Appl. Mech. Rev., 44 (11), S51– S59. CrossrefGoogle Scholar Crespo Da Silva, M.R.M., and Glynn, C.C. (1978). Nonlinear flexural-torsional dynamics of inextensional beams I: equations of motion, and, II: forced motions, J. Str. Mech., 6 (4), 437– 461. CrossrefGoogle Scholar Crespo Da Silva, M.R.M., and Zaretzky, C.L. (1990). Nonlinear modal coupling in planar and non-planar responses of inextensional beams, Int. J. Nonlinear Mech., 25 (2), 227– 239. CrossrefWeb of Science®Google Scholar Crandall, M.G., and Rabinowitch, P.H. (1971). Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321– 340. CrossrefGoogle Scholar Datta, S. (1976). Large amplitude free vibration of irregular plates placed on elastic foundation, Int. J. Nonlinear Mech., 11, 337– 345. CrossrefGoogle Scholar Dauxois, T., Peyrard, M., and Willis, C.R. (1992). Localized breather-like solution in a discrete Klein-Gordon model and application to DNA, Physica, D57, 267– 282. Google Scholar Dauxois, T., and Peyrard, M. (1993). Energy localization in nonlinear lattices, Phys. Rev. Lett., 70, 3935– 3938. CrossrefPubMedWeb of Science®Google Scholar Dean, P., and Bacon, M.D. (1963). The nature of vibrational modes in disordered systems, Proc. Phys. Soc., 81, 642– 647. CrossrefWeb of Science®Google Scholar Desolneux-Moilis, N. (1981). Orbites Periodiques des Systemes Hamiltoniens Autonomes, Lect. Notes Math., 842, 156– 173, Springer Verlag, New York. CrossrefGoogle Scholar Donovan, B., and Angress, J.F. (1971). Lattice Vibrations, Chapman and Hall, London. Google Scholar Eleonsky, V. (1991). Problems of existence of nontopological solitons (breathers) for nonlinear Klein-Gordon equations, Proceedings of NATO Advanced Research Workshop on Asymptotics Beyond all Orders, La Jolla, California, January 7–11. Google Scholar Emaci, E., Nayfeh, T.A., and Vakakis, A.F. (1996). Numerical and experimental study of nonlinear localization in a flexible structure with vibro-impacts, Zeit. Ang. Math. Mech. (ZAMM) (in press). Google Scholar Ermentrout, G.B. (1992). Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators, SIAM J. Appl. Math., 52 (6), 1665– 1687. CrossrefWeb of Science®Google Scholar Erdos, P., and Herndon, R.C. (1982). Theories of electrons in one-dimensional disordered systems. Adv. Phys., 31 (2), 65– 163. CrossrefWeb of Science®Google Scholar Fenichel, N. (1971). Persistence and smoothness of invariant manifolds of flows, Indiana Univ. Math. J., 21, 193– 225. CrossrefWeb of Science®Google Scholar Ferguson, W.E., Flaschka, H., and McLaughlin, W. (1982). Nonlinear normal modes for the Toda Chain, J. Comp. Physics, 45, 157– 209. CrossrefWeb of Science®Google Scholar Fermi, E., Pasta, J., and Ulam, S. (1955), Studies of Nonlinear Problems I, Los Alamos Scientific Laboratory Report LA-1940. Google Scholar Flytzanis, N., Pnevmatikos, S., and Remoissenet, M. (1985). Kink, breather, and asymmetric envelope or dark solitons in nonlinear chains. J. Phys C: Solid State Phys., 18, 4603– 4620. CrossrefCASWeb of Science®Google Scholar Ford, J. (1961). Equipartition of energy for nonlinear systems, J. Math. Phys., 2 (3), 387– 393. CrossrefWeb of Science®Google Scholar Ford, J., and Waters, J. (1963). Computer studies of energy sharing and ergodicity for nonlinear oscillator systems, J. Math. Phys., 4 (10), 1293– 1306. CrossrefWeb of Science®Google Scholar Frobenius, G. (1912). Uber matrizenaus nicht negativen elementen, Sitz.-Ber. Akad. Wiss. Phys.-math. Klasse, pp, 456– 477. Google Scholar Furstenberg, H. (1963). Noncommuting random products, Trans. Am. Math. Soc., 108 (3), 377– 428. Google Scholar Georgiou, I.T. (1993). Nonlinear Dynamics and Chaotic Motions of a Singularly Perturbed Nonlinear Viscoelastic Beam. Ph.D. Thesis. Purdue University, West Lafayette. Indiana. Google Scholar Georgiou, I.T., Bajaj, A.K., and Corless, M. (1994). Slow and fast invariant manifolds and normal modes in a two-DOF structural dynamical system with multiple equilibrium states. Int. J. Nonlinear Mech. (in press). Google Scholar Georgiou, I.T., and Schwartz, I.B. (1995). Slaving the in-plane motions of a nonlinear plate to its flexural motions: an invariant manifold approach. J. Appl. Mech. (submitted). Google Scholar Georgiou, I.T., and Vakakis, A.F. (1996). An invariant manifold approach for studying waves in a one-dimensional array of nonlinear oscillators, Int. J. Nonlinear Mech. (submitted). Google Scholar Gilsinn, D.E. (1975). The method of averaging and domains of stability for integral manifolds, SIAM J. Appl. Math., 29, 628– 660. CrossrefWeb of Science®Google Scholar Gilsinn, D.E. (1987). Asymptotic approximations of integral manifolds, SIAM J. Appl. Math., 47, 929– 940. CrossrefWeb of Science®Google Scholar Greenberg, H., and Yang, T.-L. (1971). Modal subspaces and normal mode vibrations, Int. J. Nonlinear Mech., 6, 311– 326. CrossrefGoogle Scholar Greenspan, B., and Holmes, P. (1983). Homoclinic orbits, subharmonics and global bifurcations in forced oscillators. In Nonlinear Dynamics and Turbulence, Pitman Advanced Publishing Program, New York. Google Scholar Guckenheimer, J., and Holmes, P. (1984). Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, Berlin and New York. Google Scholar Hale, J.K. (1961). Integral manifolds of perturbed differential systems, Ann. Math., 73, 496– 531. CrossrefWeb of Science®Google Scholar Happawana, G.S., Bajaj, A.K., and Azene, M. (1995). Analytical solution to nonsimilar normal modes in a strongly nonlinear discrete system, J. Sound Vib., 183 (2), 361– 368. CrossrefWeb of Science®Google Scholar Hasegava, A. (1975). Plasma Instabilities and Nonlinear Effects, Springer Verlag, Berlin and New York. CrossrefGoogle Scholar He, S., and Maynard, J.D. (1986). Detailed measurements of inelastic scattering in Anderson localization, Phys. Rev. Let., 57 (25), 3171– 3174. CrossrefWeb of Science®Google Scholar Hodges, C.H. (1982). Confinement of vibration by structural irregularity, J. Sound Vib., 82 (3), 411– 424. CrossrefWeb of Science®Google Scholar Hodges, C.H., and Woodhouse, J. (1989). Confinement of vibration by one-dimensional disorder, I: theory of ensemble averaging, and II: a numerical experiment on different ensemble averages, J. Sound Vib., 130 (2), 237– 268. CrossrefWeb of Science®Google Scholar Hsu, C.S. (1959). On simple subharmonics, Quart. Appl. Math., 17 (1), 102– 105. CrossrefGoogle Scholar Hsu, C.S. (1960). On the application of elliptic functions in nonlinear forced oscillations, Quart. Appl. Math., 17 (4), 393– 407. CrossrefPubMedWeb of Science®Google Scholar Hsu, C.S. (1961). On a restricted class of coupled Hill's equations and some applications, J. Appl. Mech., 28, 551– 556. CrossrefGoogle Scholar Hsu, C.S. (1963). On the parametric excitation of a dynamical system having multiple degrees of freedom, J. Appl. Mech., 30, 367– 372. CrossrefGoogle Scholar Hsu, C.S. (1964). On the stability of periodic solutions of nonlinear dynamical systems under forcing. In Les Vibrations Forcees Dans les Systemes Non-lineaires, Colloques Internationaux du Centre National de la Recherche Scientifique, No 148, Marseille, Sept. 7–12. Google Scholar Hunt, G.W., Bolt, H.M., and Thompson, J.M.T. (1989). Structural localization phenomena and the dynamical phase-space analogy, Proc. Roy. Soc. London, A 425, 245– 267. CrossrefWeb of Science®Google Scholar Hunt, G.W., and Wadee, M.K. (1991). Comparative Lagrangian formulations for localized buckling, Proc. Roy. Soc. London. A 434, 485– 502. CrossrefWeb of Science®Google Scholar Hyams, M., and Month, L. (1984). The origin of stability indeterminacy in a symmetric hamiltonian, J. Appl. Mech., 51, 399– 405. CrossrefWeb of Science®Google Scholar Ince, E.L. (1926). Ordinary Differential Equations, Longmans Green, London. Google Scholar Ishii, K. (1973). Localization of eigenvalues and transport phenomena in the one-dimensional disordered system, Suppl. Prog. Theor. Phys., 53. CrossrefGoogle Scholar Ivanov, A. P. (1993). Analytical methods in the theory of vibro-impact systems, Prikl. Mat. Mekh., 57 (2), 5– 21. Google Scholar Jackson, E.A. (1963a). Nonlinear coupled oscillators. I. Perturbation theory; ergodic theorem, J. Math. Physics, 4 (4), 551– 558. CrossrefWeb of Science®Google Scholar Jackson, E.A. (1963b). Nonlinear coupled oscillators. II. Comparison of theory with computer solutions, J. Math. Physics, 4 (5), 686– 700. CrossrefWeb of Science®Google Scholar Jaffe, C., and Brummer, P. (1980). Local and normal modes: a classical perspective, J. Chem. Phys., 73 (11), 5646– 5658. CrossrefCASWeb of Science®Google Scholar Johnson, T., and Rand, R.H. (1979). On the existence and bifurcation of minimal normal modes, Int. J. Nonlinear Mech., 14, 1– 12. CrossrefWeb of Science®Google Scholar Kauderer, H. (1958). Nichtlineare Mechanik, Springer Verlag, Berlin and New York. CrossrefGoogle Scholar Keane, A.J., and Price, W.G. (1989). On the vibrations of mono-coupled periodic and near-periodic structures, J. Sound Vib., 128 (3), 423– 450. CrossrefWeb of Science®Google Scholar King, M.E. (1994). Analytical and Experimental Aspects of Nonlinear Normal Modes and Nonlinear Mode Localization, Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois. Google Scholar King, M.E., and Vakakis, A.F. (1993b). An energy-based formulation for computing nonlinear normal modes in undamped continuous systems, J. Vibr. Acoust., 116 (3), 332– 340. CrossrefWeb of Science®Google Scholar King, M.E., and Vakakis, A.F. (1994). A method for studying waves with spatially localized envelopes in a class of weakly nonlinear partial differential equations, Wave Motion, 19, 391– 405. CrossrefWeb of Science®Google Scholar King, M.E., and Vakakis, A.F. (1995a). A very complicated structure of resonances in a nonlinear system with cyclic symmetry, Nonl. Dyn., 7, 85– 104. Web of Science®Google Scholar King, M.E., and Vakakis, A.F. (1995b). Mode localization in a system of coupled flexible beams with geometric nonlinearities, ZAMM, 75 (2), 127– 139. Wiley Online LibraryWeb of Science®Google Scholar King, M.E., and Vakakis, A.F. (1995c). Asymptotic analysis of nonlinear mode localization in a class of coupled continuous structures, Int. J. Solids Str., 32 (8/9), 1161– 1177. CrossrefWeb of Science®Google Scholar King, M.E., Aubrecht, J.A.S., and Vakakis, A.F. (1995). Experimental nonlinear steady-state localization in coupled beams with active nonlinearities, J. Nonl. Science, 5 (6), 485– 502. CrossrefWeb of Science®Google Scholar Kinney, W. (1965). On the Geometrization of the Forced Oscillations of Nonlinear Systems Having Many Degrees of Freedom, Ph.D. Thesis, University of California, Berkeley, California. Google Scholar Kinney, W., and Rosenberg, R. (1965). On steady state forced vibrations in strongly nonlinear systems having two degrees of freedom, Coll. Int. Centre National Res. Scient., No. 148, Paris. Google Scholar Kinney, W., and Rosenberg, R. (1966). On the steady state vibrations of nonlinear systems with many degrees of freedom, J. Appl. Mech., 33 (2), 406– 412. CrossrefWeb of Science®Google Scholar Kissel, G.J. (1988). Localization in Disordered Periodic Structures, Ph.D. Thesis, Massachusetts Institute of Technology, Boston, Massachusetts. Google Scholar Klinker, T., and Lauterborn, W. (1983). Scattering of lattice solitons from a mass interface-a synergetic approach, Physica, 8D, 249– 256. Google Scholar Kosevich, A.M., and Kovalev, A.S. (1975). Self-localization of vibrations in a one-dimensional anharmonic chain, Sov. Phys.-JETP, 40 (5), 891– 896. Google Scholar Kosevich, A.M., and Kovalev, A.S. (1989). Introduction to Nonlinear Physical Mechanics, Naukova Dumka, Kiev, Ukraine. Google Scholar Kramer, B., and MacKinnon, A. (1993). Localization: Theory and experiment, Rep. Prog. Phys., 56, 1469– 1564. CrossrefCASWeb of Science®Google Scholar Krasnoselskii, M.A. (1956). Topological Methods in the Theory of Integral Equations, Gostehizdat, Moscow. Google Scholar Krasnoselskii, M.A. (1968). Positive Solutions of Operator Equations, P. Noordhoff Publishers, Groningen, Netherlands. Google Scholar Krein, M.G. (1955). Fundamental aspects of the theory of λ-zones of stability for a canonical system of linear differential equations with periodic coefficients. In Sb. pamyati A.A.Andronova, Akad. Nauk SSSR, Moscow (in Russian). Google Scholar Kruskal, M., and Segur, H. (1987). Nonexistence of small-amplitude breather solutions in ø4 theory, Phys. Rev. Lett., 58, 747. CrossrefPubMedWeb of Science®Google Scholar Kuske, R., Schuss, Z., Goldhirsch, I., and Noscowicz, S.H. (1993). Schrodinger's equation on a one-dimensional lattice with weak disorder, SIAM J. Appl. Math., 53 (5), 1210– 1252. CrossrefWeb of Science®Google Scholar Lagerstrom, P.A. (1988). Matched Asymptotic Expansions, Springer Verlag, Berlin, Heidelberg, and New York. CrossrefGoogle Scholar Lamb, G.L. (1980). Elements of Soliton Theory, Wiley, New York. Google Scholar Lee, P.A., and Ramakrishnan, T. (1985). Disordered electronic systems, Rev. Modern Phys., 57 (2), 287– 337. CrossrefCASWeb of Science®Google Scholar Levine, M.B., and Salama, M.A. (1991). Experimental Investigation of the Mode Localization Phenomenon, JPL Report D-8767, Jet Propulsion Laboratory, Pasadena, CA. Google Scholar Levine, M.B., and Salama, M.A. (1992). Mode localization experiments on a ribbed antenna. Proc. 33rd AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics and Materials Conference, Dallas, Texas, April 13–15. Google Scholar Li, Q., Pnevmatikos, S., Ekonomou, E.N., and Soukoulis, C.M. (1988). Lattice-soliton scattering in nonlinear atomic chains, Phys. Rev. B, 37 (7), 3534– 3541. CrossrefWeb of Science®Google Scholar Lichtenberg, A. and Lieberman, M. (1983). Regular and Stochastic Motion. Springer Verlag, Berlin, and New York. CrossrefGoogle Scholar Lomdahl, P.S. (1985). Solitons in Josephson junctions: an overview. J. Stat. Phys., 39 (5/6), 551– 561. CrossrefWeb of Science®Google Scholar Lu, Y., and Achenbach, J.D. (1991). Effects of random deviations in interface properties on the propagation of ultrasound in thick composites, J. Acoust. Soc. Am., 90 (5), 2576– 2585. CrossrefWeb of Science®Google Scholar Luongo, A. (1988). Localized vibrations in imperfect structures with high modal density (in Italian). Proc. IX Italian Congress of Theoretical and Applied Mechanics, 2, 655– 658, Bari, Italy. Google Scholar Luongo, A. (1991). On the amplitude modulation and localization phenomena in interactive buckling problems, Int. J. Solids Str., 27 (15), 1943– 1954. CrossrefWeb of Science®Google Scholar Luongo, A. (1992). Mode localization by structural imperfections in one-dimensional continuous systems, J. Sound Vib., 155 (2), 249– 271. CrossrefWeb of Science®Google Scholar Luongo, A., and Pignataro, M. (1988). Multiple interaction and localization phenomena in the postbuckling of compressed thin-walled members, AIAA J., 26 (11), 1395– 1402. CrossrefWeb of Science®Google Scholar Lust, S.D., Friedmann, P.P., and Bendiksen, O.O. (1991). Free and forced response of nearly periodic multi-span beams and multi-bay trusses. Proceedings of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics, and Materials Conference, Baltimore, Maryland, April 8–10. Google Scholar Lyapunov, A. (1907). Probleme generale de la stabilite du mouvement, Ann. Fas. Sci. Toulouse, 9, 203– 474. CrossrefGoogle Scholar Lyapunov, A. (1947). The General Problem of the Stability of Motion, Princeton Univ. Press, Princeton, New Jersey. Google Scholar MacKay, R.S., and Aubry, S. (1994). Proof of Existence of Breathers for Time-reversible or Hamiltonian Networks of Weakly Coupled Oscillators. Nonlinear Systems Laboratoty Preprint 20/1994, Mathematics Institute, University of Warwick, Coventry, UK. Google Scholar Magiros, D.G. (1961). Method for defining principal modes of nonlinear systems utilizing infinite determinants, J. Math. Phys., 2 (6), 869– 875. CrossrefWeb of Science®Google Scholar Malkin, I.G. (1949). Lyapunov's and Poincaré's Methods in the Theory of Nonlinear Oscillations, State Tech. and Theor. Liter. Publ., Leningrad-Moscow. Google Scholar Malkin, I.G. (1956). Certain Problems of the Theory of Nonlinear Vibrations, GTI, Moscow (in Russian). Google Scholar Manevitch, L.I., and Cherevatzky, B.P. (1969). On the approximate determination of normal vibrations of nonlinear systems with two degrees of freedom, Proceedings of the Dnepropetrovsk Railway Transport Institute: Problems of Strength, Reliability and Destruction of Mechanical Systems, Dnepropetrovsk, Ukraine. Google Scholar Manevitch, L.I., and Cherevatzky, B.P. (1972). Investigation of resonance regimes in nonlinear systems with two degrees of freedom, Prikl. Mech., 9 (12), 74– 80 (in Russian). Google Scholar Manevitch, L.I., and Mikhlin, Yu.V. (1972). On periodic solutions close to rectilinear normal vibration modes, PMM, 36 (6), 1051– 1058. Google Scholar Manevitch, L.I., and Pilipchuk, V.N. (1981). Nonlinear vibrations of a three-degree-of-freedom mechanical system with several equilibrium states, Prikl. Mech., 13 (2), 97– 103. Google Scholar Manevitch, L.I., and Pinsky, M.A. (1972a). On the use of symmetry when calculating nonlinear oscillations, Izv. AN SSSR, MTT, 7 (2), 43– 46. Google Scholar Manevitch, L.I., and Pinsky, M.A. (1972b). On nonlinear normal vibrations in systems with two degrees of freedom, Prikl. Mech., 8 (9), 83– 90. Google Scholar Manevitch, L.I., Mikhlin, Yu.V., and Pilipchuk, V.N. (1989). The Method of Normal Vibrations for Essentially Nonlinear Systems, Nauka, Moscow (in Russian). Web of Science®Google Scholar Margallo, G., Bejarano, D., and Yuste, B. (1988). Generalized Fourier series for the study of limit cycles, J. Sound Vib., 125 (1), 13– 21." @default.
- W4205174633 created "2022-01-25" @default.
- W4205174633 date "1996-07-31" @default.
- W4205174633 modified "2023-10-03" @default.
- W4205174633 title "References" @default.
- W4205174633 cites W124770081 @default.
- W4205174633 cites W126935648 @default.
- W4205174633 cites W1483358334 @default.
- W4205174633 cites W1496798092 @default.
- W4205174633 cites W1521645495 @default.
- W4205174633 cites W1524565983 @default.
- W4205174633 cites W155844740 @default.
- W4205174633 cites W1673925160 @default.
- W4205174633 cites W1676529478 @default.
- W4205174633 cites W1815946177 @default.
- W4205174633 cites W1964131158 @default.
- W4205174633 cites W1964134419 @default.
- W4205174633 cites W1964258290 @default.
- W4205174633 cites W1965810287 @default.
- W4205174633 cites W1966128004 @default.
- W4205174633 cites W1966317617 @default.
- W4205174633 cites W1966830915 @default.
- W4205174633 cites W1970595802 @default.
- W4205174633 cites W1970753775 @default.
- W4205174633 cites W1971457534 @default.
- W4205174633 cites W1974595215 @default.
- W4205174633 cites W1974993672 @default.
- W4205174633 cites W1978103970 @default.
- W4205174633 cites W1978512613 @default.
- W4205174633 cites W1978684630 @default.
- W4205174633 cites W1979717091 @default.
- W4205174633 cites W1980482895 @default.
- W4205174633 cites W1983195510 @default.
- W4205174633 cites W1983923055 @default.
- W4205174633 cites W1983925431 @default.
- W4205174633 cites W1983944561 @default.
- W4205174633 cites W1985279039 @default.
- W4205174633 cites W1985693965 @default.
- W4205174633 cites W1986511681 @default.
- W4205174633 cites W1987432014 @default.
- W4205174633 cites W1988204204 @default.
- W4205174633 cites W1988244564 @default.
- W4205174633 cites W1988608341 @default.
- W4205174633 cites W1989173945 @default.
- W4205174633 cites W1990030842 @default.
- W4205174633 cites W1992666283 @default.
- W4205174633 cites W1993800552 @default.
- W4205174633 cites W1993964461 @default.
- W4205174633 cites W1994299393 @default.
- W4205174633 cites W1994506390 @default.
- W4205174633 cites W1999373635 @default.
- W4205174633 cites W1999630201 @default.
- W4205174633 cites W2003195507 @default.
- W4205174633 cites W2003980267 @default.
- W4205174633 cites W2005653974 @default.
- W4205174633 cites W2006610569 @default.
- W4205174633 cites W2006895890 @default.
- W4205174633 cites W2007948920 @default.
- W4205174633 cites W2008606935 @default.
- W4205174633 cites W2009108258 @default.
- W4205174633 cites W2009198566 @default.
- W4205174633 cites W2009452600 @default.
- W4205174633 cites W2010857324 @default.
- W4205174633 cites W2010996501 @default.
- W4205174633 cites W2011036414 @default.
- W4205174633 cites W2011728484 @default.
- W4205174633 cites W2012276148 @default.
- W4205174633 cites W2013705877 @default.
- W4205174633 cites W2014505785 @default.
- W4205174633 cites W2014721140 @default.
- W4205174633 cites W2015471031 @default.
- W4205174633 cites W2016268384 @default.
- W4205174633 cites W2016401347 @default.
- W4205174633 cites W2016548496 @default.
- W4205174633 cites W2017155423 @default.
- W4205174633 cites W2018105652 @default.
- W4205174633 cites W2018312056 @default.
- W4205174633 cites W2021100779 @default.
- W4205174633 cites W2021758621 @default.
- W4205174633 cites W2022432568 @default.
- W4205174633 cites W2023456906 @default.
- W4205174633 cites W2023743841 @default.
- W4205174633 cites W2024776191 @default.
- W4205174633 cites W2024842839 @default.
- W4205174633 cites W2027753639 @default.
- W4205174633 cites W2028774635 @default.
- W4205174633 cites W2031396681 @default.
- W4205174633 cites W2032663853 @default.
- W4205174633 cites W2033530718 @default.
- W4205174633 cites W2034085821 @default.
- W4205174633 cites W2034359012 @default.
- W4205174633 cites W2034497227 @default.
- W4205174633 cites W2035988785 @default.
- W4205174633 cites W2037758750 @default.
- W4205174633 cites W2037811508 @default.
- W4205174633 cites W2038037005 @default.
- W4205174633 cites W2038149640 @default.
- W4205174633 cites W2038898052 @default.