Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205194038> ?p ?o ?g. }
- W4205194038 endingPage "106646" @default.
- W4205194038 startingPage "106646" @default.
- W4205194038 abstract "• Chls response shifted to longer wavelengths but inversely for nutrients as spatial resolution lowers. • LMT-SMOTEBoost yielded a good result in classifying nutrients and chls status. • There is a trade-off between spatial scales and model accuracies. • VIs outperformed raw band in discerning nutrients and chls status. The conventional method to quantify leaf biochemical properties (nutrients and chlorophylls) is tedious, labour-intensive, and impractical for vast oil palm plantation areas. Spectral analysis retrieved from a spectroradiometer and an unmanned aerial vehicle (UAV) and imbalanced approaches such as the Synthetic Minority Over-sampling TEchnique (SMOTE) and machine learning have given promising results for monitoring plant biochemical properties. However, the integration of these methods is not widely explored for oil palm. There are three primary aims of the current study. We evaluate the effectiveness of the integration of SMOTE, Logistic Model Tree (LMT), and Adaptive Boosting (AdaBoost) to address data imbalance problems for the assessment of the oil palm nutrients and chlorophylls status. The performance of the raw band and vegetation index (VI) extracted from the UAV in assessing leaf biochemical properties of mature oil palms is also addressed. Finally, we compare the competency of the spectral model retrieved from the spectroradiometer and UAV. In the study, nitrogen (N) treatments varying between 0 and 6 kg palm −1 were applied to mature Tenera palms. The integration of SMOTE with LMT and AdaBoost (LMT-SMOTEBoost) outperformed other approaches in classifying the leaf biochemical sufficiency status of mature oil palm. The VIs outperformed the raw band in discriminating the leaf biochemical properties at the canopy level. Both leaf and canopy spectral models obtained from spectroradiometer and UAV were comparable and produced good performance with balanced accuracy (BAcc) above 0.77. Using these techniques may provide palm oil plantation owners with a cost-effective way to monitor nutrient levels in palms more efficiently and comprehensively to ensure greater harvests and tree health." @default.
- W4205194038 created "2022-01-26" @default.
- W4205194038 creator A5004618857 @default.
- W4205194038 creator A5010203344 @default.
- W4205194038 creator A5062173315 @default.
- W4205194038 creator A5074750553 @default.
- W4205194038 date "2022-02-01" @default.
- W4205194038 modified "2023-10-01" @default.
- W4205194038 title "Synthetic Minority Over-sampling TEchnique (SMOTE) and Logistic Model Tree (LMT)-Adaptive Boosting algorithms for classifying imbalanced datasets of nutrient and chlorophyll sufficiency levels of oil palm (Elaeis guineensis) using spectroradiometers and unmanned aerial vehicles" @default.
- W4205194038 cites W1492535524 @default.
- W4205194038 cites W1914354022 @default.
- W4205194038 cites W1964050442 @default.
- W4205194038 cites W1964217023 @default.
- W4205194038 cites W1978323313 @default.
- W4205194038 cites W1981039744 @default.
- W4205194038 cites W1988233512 @default.
- W4205194038 cites W1988392308 @default.
- W4205194038 cites W1995029758 @default.
- W4205194038 cites W2000613913 @default.
- W4205194038 cites W2004598447 @default.
- W4205194038 cites W2008283621 @default.
- W4205194038 cites W2012686349 @default.
- W4205194038 cites W2036073641 @default.
- W4205194038 cites W2038464048 @default.
- W4205194038 cites W2039604550 @default.
- W4205194038 cites W2045102154 @default.
- W4205194038 cites W2046232045 @default.
- W4205194038 cites W2046404820 @default.
- W4205194038 cites W2054585477 @default.
- W4205194038 cites W2060650801 @default.
- W4205194038 cites W2063623478 @default.
- W4205194038 cites W2069267285 @default.
- W4205194038 cites W2073677295 @default.
- W4205194038 cites W2083775677 @default.
- W4205194038 cites W2088766306 @default.
- W4205194038 cites W2089441588 @default.
- W4205194038 cites W2091809670 @default.
- W4205194038 cites W2099454382 @default.
- W4205194038 cites W2112122115 @default.
- W4205194038 cites W2112889514 @default.
- W4205194038 cites W2113410727 @default.
- W4205194038 cites W2114051839 @default.
- W4205194038 cites W2131658607 @default.
- W4205194038 cites W2144559754 @default.
- W4205194038 cites W2148143831 @default.
- W4205194038 cites W2150140969 @default.
- W4205194038 cites W2159961845 @default.
- W4205194038 cites W2163410149 @default.
- W4205194038 cites W2166516660 @default.
- W4205194038 cites W2291365323 @default.
- W4205194038 cites W2544836728 @default.
- W4205194038 cites W2709120126 @default.
- W4205194038 cites W2751083419 @default.
- W4205194038 cites W2759665293 @default.
- W4205194038 cites W2789268666 @default.
- W4205194038 cites W2805574237 @default.
- W4205194038 cites W2807715987 @default.
- W4205194038 cites W2809577195 @default.
- W4205194038 cites W2890834826 @default.
- W4205194038 cites W2891195071 @default.
- W4205194038 cites W2921970948 @default.
- W4205194038 cites W2922173509 @default.
- W4205194038 cites W2922369509 @default.
- W4205194038 cites W2938617311 @default.
- W4205194038 cites W2946612828 @default.
- W4205194038 cites W2965019906 @default.
- W4205194038 cites W2967124395 @default.
- W4205194038 cites W2989868342 @default.
- W4205194038 cites W2992086439 @default.
- W4205194038 cites W2994830638 @default.
- W4205194038 cites W3002050421 @default.
- W4205194038 cites W3010655531 @default.
- W4205194038 cites W3016453242 @default.
- W4205194038 cites W3021559878 @default.
- W4205194038 cites W3089586298 @default.
- W4205194038 cites W3162589239 @default.
- W4205194038 cites W4299689471 @default.
- W4205194038 doi "https://doi.org/10.1016/j.compag.2021.106646" @default.
- W4205194038 hasPublicationYear "2022" @default.
- W4205194038 type Work @default.
- W4205194038 citedByCount "18" @default.
- W4205194038 countsByYear W42051940382022 @default.
- W4205194038 countsByYear W42051940382023 @default.
- W4205194038 crossrefType "journal-article" @default.
- W4205194038 hasAuthorship W4205194038A5004618857 @default.
- W4205194038 hasAuthorship W4205194038A5010203344 @default.
- W4205194038 hasAuthorship W4205194038A5062173315 @default.
- W4205194038 hasAuthorship W4205194038A5074750553 @default.
- W4205194038 hasConcept C108597893 @default.
- W4205194038 hasConcept C119857082 @default.
- W4205194038 hasConcept C120665830 @default.
- W4205194038 hasConcept C121332964 @default.
- W4205194038 hasConcept C127313418 @default.
- W4205194038 hasConcept C127413603 @default.
- W4205194038 hasConcept C130066347 @default.
- W4205194038 hasConcept C142796444 @default.
- W4205194038 hasConcept C154945302 @default.
- W4205194038 hasConcept C18903297 @default.