Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205207904> ?p ?o ?g. }
- W4205207904 endingPage "107663" @default.
- W4205207904 startingPage "107663" @default.
- W4205207904 abstract "In recent years, the residential load forecasting problem has been gaining renewed interest due to the advent of Smart Meters and Data Analytics. A novel hybrid method based on Empirical Mode Decomposition (EMD) in tandem with Extreme Learning Machine (ELM) is proposed in this paper to improve the forecast accuracy of residential load signals derived from Smart Meter data. Three state-of-the-art machine learning methods, namely Artificial Neural Network (ANN), Support Vector Regression (SVR), and ELM, are selected for performance comparison. It is observed from the results that the proposed method is found effective in picking the peaks that are usually present in residential loads and hence improved the forecast accuracy. Further, the results show that the performance of EMD based models is improved when the test data is characterized by more peaks. Smart*, a public dataset containing residential load measurements, is used for evaluation." @default.
- W4205207904 created "2022-01-25" @default.
- W4205207904 creator A5013130216 @default.
- W4205207904 creator A5016992919 @default.
- W4205207904 creator A5018063453 @default.
- W4205207904 creator A5050352848 @default.
- W4205207904 date "2022-03-01" @default.
- W4205207904 modified "2023-10-06" @default.
- W4205207904 title "A novel hybrid short-term electricity forecasting technique for residential loads using Empirical Mode Decomposition and Extreme Learning Machines" @default.
- W4205207904 cites W1969200173 @default.
- W4205207904 cites W2007221293 @default.
- W4205207904 cites W2026131661 @default.
- W4205207904 cites W2052059781 @default.
- W4205207904 cites W2079522653 @default.
- W4205207904 cites W2111072639 @default.
- W4205207904 cites W2112738128 @default.
- W4205207904 cites W2301541953 @default.
- W4205207904 cites W2516939159 @default.
- W4205207904 cites W2573526403 @default.
- W4205207904 cites W2604099671 @default.
- W4205207904 cites W2754252319 @default.
- W4205207904 cites W2804609327 @default.
- W4205207904 cites W2909436466 @default.
- W4205207904 cites W2913037807 @default.
- W4205207904 cites W2956702988 @default.
- W4205207904 cites W2980132814 @default.
- W4205207904 cites W3004335670 @default.
- W4205207904 cites W3006487372 @default.
- W4205207904 cites W3069141980 @default.
- W4205207904 doi "https://doi.org/10.1016/j.compeleceng.2021.107663" @default.
- W4205207904 hasPublicationYear "2022" @default.
- W4205207904 type Work @default.
- W4205207904 citedByCount "20" @default.
- W4205207904 countsByYear W42052079042022 @default.
- W4205207904 countsByYear W42052079042023 @default.
- W4205207904 crossrefType "journal-article" @default.
- W4205207904 hasAuthorship W4205207904A5013130216 @default.
- W4205207904 hasAuthorship W4205207904A5016992919 @default.
- W4205207904 hasAuthorship W4205207904A5018063453 @default.
- W4205207904 hasAuthorship W4205207904A5050352848 @default.
- W4205207904 hasConcept C106131492 @default.
- W4205207904 hasConcept C111919701 @default.
- W4205207904 hasConcept C119599485 @default.
- W4205207904 hasConcept C119857082 @default.
- W4205207904 hasConcept C121332964 @default.
- W4205207904 hasConcept C12267149 @default.
- W4205207904 hasConcept C124681953 @default.
- W4205207904 hasConcept C127413603 @default.
- W4205207904 hasConcept C154945302 @default.
- W4205207904 hasConcept C18903297 @default.
- W4205207904 hasConcept C206658404 @default.
- W4205207904 hasConcept C25570617 @default.
- W4205207904 hasConcept C2779510800 @default.
- W4205207904 hasConcept C2780150128 @default.
- W4205207904 hasConcept C31972630 @default.
- W4205207904 hasConcept C41008148 @default.
- W4205207904 hasConcept C48677424 @default.
- W4205207904 hasConcept C50644808 @default.
- W4205207904 hasConcept C61797465 @default.
- W4205207904 hasConcept C62520636 @default.
- W4205207904 hasConcept C86803240 @default.
- W4205207904 hasConceptScore W4205207904C106131492 @default.
- W4205207904 hasConceptScore W4205207904C111919701 @default.
- W4205207904 hasConceptScore W4205207904C119599485 @default.
- W4205207904 hasConceptScore W4205207904C119857082 @default.
- W4205207904 hasConceptScore W4205207904C121332964 @default.
- W4205207904 hasConceptScore W4205207904C12267149 @default.
- W4205207904 hasConceptScore W4205207904C124681953 @default.
- W4205207904 hasConceptScore W4205207904C127413603 @default.
- W4205207904 hasConceptScore W4205207904C154945302 @default.
- W4205207904 hasConceptScore W4205207904C18903297 @default.
- W4205207904 hasConceptScore W4205207904C206658404 @default.
- W4205207904 hasConceptScore W4205207904C25570617 @default.
- W4205207904 hasConceptScore W4205207904C2779510800 @default.
- W4205207904 hasConceptScore W4205207904C2780150128 @default.
- W4205207904 hasConceptScore W4205207904C31972630 @default.
- W4205207904 hasConceptScore W4205207904C41008148 @default.
- W4205207904 hasConceptScore W4205207904C48677424 @default.
- W4205207904 hasConceptScore W4205207904C50644808 @default.
- W4205207904 hasConceptScore W4205207904C61797465 @default.
- W4205207904 hasConceptScore W4205207904C62520636 @default.
- W4205207904 hasConceptScore W4205207904C86803240 @default.
- W4205207904 hasLocation W42052079041 @default.
- W4205207904 hasOpenAccess W4205207904 @default.
- W4205207904 hasPrimaryLocation W42052079041 @default.
- W4205207904 hasRelatedWork W2373247039 @default.
- W4205207904 hasRelatedWork W2475251269 @default.
- W4205207904 hasRelatedWork W2969890106 @default.
- W4205207904 hasRelatedWork W3134233996 @default.
- W4205207904 hasRelatedWork W3185179407 @default.
- W4205207904 hasRelatedWork W3194539120 @default.
- W4205207904 hasRelatedWork W4205207904 @default.
- W4205207904 hasRelatedWork W4205958290 @default.
- W4205207904 hasRelatedWork W4320060020 @default.
- W4205207904 hasRelatedWork W4362499384 @default.
- W4205207904 hasVolume "98" @default.
- W4205207904 isParatext "false" @default.
- W4205207904 isRetracted "false" @default.