Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205236264> ?p ?o ?g. }
- W4205236264 endingPage "165004" @default.
- W4205236264 startingPage "164986" @default.
- W4205236264 abstract "Wheat is a staple crop that is grown across the world due to its substantial contribution to human nutrition. Its significance is evident as it provides almost 20% of calories and protein required for daily human consumption. However, wheat yield is affected by rust disease that can reduce 30% of wheat production which is a serious threat to food security. In order to minimize the loss, it is crucial to identify precisely and localize the wheat rust disease and its infection types. For this purpose, several classification and segmentation techniques are used which are based on machine/deep learning models. This paper provides a realistic analysis and evaluation of various segmentation techniques including Watershed, Grab Cut, and U2-Net. These techniques are applied to the wheat stripe rust data to generate multiple datasets such as Watershed segmented data, GrabCut segmented data, and U2-Net segmented data. Subsequently, a pre-trained deep learning model, ResNet-18 is applied to these datasets to assess the impact of segmentation on classification accuracy. The highest classification accuracy (96.196%) is achieved on the dataset segmented by U2-Net. This research collates several state-of-the-art segmentation techniques in terms of correctness and their direct impact on classification accuracy which gives a pragmatic analysis for researchers to choose optimal segmentation technique. The research primarily focuses on the direct impact of segmentation on classification accuracy of wheat stripe rust, which has not been given sufficient focus in earlier researches." @default.
- W4205236264 created "2022-01-26" @default.
- W4205236264 creator A5000197255 @default.
- W4205236264 creator A5005645475 @default.
- W4205236264 creator A5009082579 @default.
- W4205236264 creator A5019883030 @default.
- W4205236264 creator A5057042065 @default.
- W4205236264 creator A5089594707 @default.
- W4205236264 creator A5090771677 @default.
- W4205236264 date "2021-01-01" @default.
- W4205236264 modified "2023-10-03" @default.
- W4205236264 title "Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning" @default.
- W4205236264 cites W200758786 @default.
- W4205236264 cites W2019610851 @default.
- W4205236264 cites W2066478430 @default.
- W4205236264 cites W2083164767 @default.
- W4205236264 cites W2087408442 @default.
- W4205236264 cites W2101391185 @default.
- W4205236264 cites W2124351162 @default.
- W4205236264 cites W2126147504 @default.
- W4205236264 cites W2131077461 @default.
- W4205236264 cites W2133059825 @default.
- W4205236264 cites W2139572892 @default.
- W4205236264 cites W2146502048 @default.
- W4205236264 cites W2167047493 @default.
- W4205236264 cites W2168423768 @default.
- W4205236264 cites W2172103900 @default.
- W4205236264 cites W2467818129 @default.
- W4205236264 cites W2473156356 @default.
- W4205236264 cites W2564883000 @default.
- W4205236264 cites W2591423802 @default.
- W4205236264 cites W2797392882 @default.
- W4205236264 cites W2799842361 @default.
- W4205236264 cites W2820055517 @default.
- W4205236264 cites W2897228234 @default.
- W4205236264 cites W2900636694 @default.
- W4205236264 cites W2906377504 @default.
- W4205236264 cites W2922143761 @default.
- W4205236264 cites W2949060638 @default.
- W4205236264 cites W2967937669 @default.
- W4205236264 cites W2995187556 @default.
- W4205236264 cites W3013580370 @default.
- W4205236264 cites W3025800305 @default.
- W4205236264 cites W3027151395 @default.
- W4205236264 cites W3086184474 @default.
- W4205236264 cites W3098295008 @default.
- W4205236264 cites W3135361473 @default.
- W4205236264 cites W3135999592 @default.
- W4205236264 cites W3166424296 @default.
- W4205236264 cites W3167324598 @default.
- W4205236264 cites W3178340391 @default.
- W4205236264 cites W3190789542 @default.
- W4205236264 cites W4255422126 @default.
- W4205236264 cites W2005288536 @default.
- W4205236264 cites W3036839399 @default.
- W4205236264 doi "https://doi.org/10.1109/access.2021.3134196" @default.
- W4205236264 hasPublicationYear "2021" @default.
- W4205236264 type Work @default.
- W4205236264 citedByCount "9" @default.
- W4205236264 countsByYear W42052362642022 @default.
- W4205236264 countsByYear W42052362642023 @default.
- W4205236264 crossrefType "journal-article" @default.
- W4205236264 hasAuthorship W4205236264A5000197255 @default.
- W4205236264 hasAuthorship W4205236264A5005645475 @default.
- W4205236264 hasAuthorship W4205236264A5009082579 @default.
- W4205236264 hasAuthorship W4205236264A5019883030 @default.
- W4205236264 hasAuthorship W4205236264A5057042065 @default.
- W4205236264 hasAuthorship W4205236264A5089594707 @default.
- W4205236264 hasAuthorship W4205236264A5090771677 @default.
- W4205236264 hasBestOaLocation W42052362641 @default.
- W4205236264 hasConcept C104317684 @default.
- W4205236264 hasConcept C108583219 @default.
- W4205236264 hasConcept C119857082 @default.
- W4205236264 hasConcept C124504099 @default.
- W4205236264 hasConcept C153180895 @default.
- W4205236264 hasConcept C154945302 @default.
- W4205236264 hasConcept C185592680 @default.
- W4205236264 hasConcept C197781089 @default.
- W4205236264 hasConcept C199360897 @default.
- W4205236264 hasConcept C2994440102 @default.
- W4205236264 hasConcept C41008148 @default.
- W4205236264 hasConcept C55439883 @default.
- W4205236264 hasConcept C55493867 @default.
- W4205236264 hasConcept C89600930 @default.
- W4205236264 hasConcept C93678976 @default.
- W4205236264 hasConceptScore W4205236264C104317684 @default.
- W4205236264 hasConceptScore W4205236264C108583219 @default.
- W4205236264 hasConceptScore W4205236264C119857082 @default.
- W4205236264 hasConceptScore W4205236264C124504099 @default.
- W4205236264 hasConceptScore W4205236264C153180895 @default.
- W4205236264 hasConceptScore W4205236264C154945302 @default.
- W4205236264 hasConceptScore W4205236264C185592680 @default.
- W4205236264 hasConceptScore W4205236264C197781089 @default.
- W4205236264 hasConceptScore W4205236264C199360897 @default.
- W4205236264 hasConceptScore W4205236264C2994440102 @default.
- W4205236264 hasConceptScore W4205236264C41008148 @default.
- W4205236264 hasConceptScore W4205236264C55439883 @default.
- W4205236264 hasConceptScore W4205236264C55493867 @default.