Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205256585> ?p ?o ?g. }
- W4205256585 endingPage "16" @default.
- W4205256585 startingPage "16" @default.
- W4205256585 abstract "One of the most significant challenges involved in efforts to understand the equation of state of dense neutron-rich matter is the uncertain density dependence of the nuclear symmetry energy. Because of its broad impact, pinning down the density dependence of the nuclear symmetry energy has been a longstanding goal of both nuclear physics and astrophysics. Recent observations of neutron stars, in both electromagnetic and gravitational-wave spectra, have already constrained significantly the nuclear symmetry energy at high densities. Training deep neural networks to learn a computationally efficient representation of the mapping between astrophysical observables of neutron stars, such as masses, radii, and tidal deformabilities, and the nuclear symmetry energy allows its density dependence to be determined reliably and accurately. In this work we use a deep learning approach to determine the nuclear symmetry energy as a function of density directly from observational neutron star data. We show for the first time that artificial neural networks can precisely reconstruct the nuclear symmetry energy from a set of available neutron star observables, such as, masses and radii as those measured by, e.g., the NICER mission, or masses and tidal deformabilities as measured by the LIGO/VIRGO/KAGRA gravitational-wave detectors. These results demonstrate the potential of artificial neural networks to reconstruct the symmetry energy, and the equation of state, directly from neutron star observational data, and emphasize the importance of the deep learning approach in the era of Multi-Messenger Astrophysics." @default.
- W4205256585 created "2022-01-26" @default.
- W4205256585 creator A5067452947 @default.
- W4205256585 date "2022-01-18" @default.
- W4205256585 modified "2023-10-04" @default.
- W4205256585 title "Translating Neutron Star Observations to Nuclear Symmetry Energy via Deep Neural Networks" @default.
- W4205256585 cites W1485797974 @default.
- W4205256585 cites W1520549948 @default.
- W4205256585 cites W1965197768 @default.
- W4205256585 cites W1968679403 @default.
- W4205256585 cites W1971106057 @default.
- W4205256585 cites W1975206620 @default.
- W4205256585 cites W1978002377 @default.
- W4205256585 cites W1985752314 @default.
- W4205256585 cites W1994870116 @default.
- W4205256585 cites W1995777558 @default.
- W4205256585 cites W1995969332 @default.
- W4205256585 cites W1999658221 @default.
- W4205256585 cites W2007050138 @default.
- W4205256585 cites W2012430171 @default.
- W4205256585 cites W2016515266 @default.
- W4205256585 cites W2018586753 @default.
- W4205256585 cites W2024112767 @default.
- W4205256585 cites W2024623190 @default.
- W4205256585 cites W2029049894 @default.
- W4205256585 cites W2032332167 @default.
- W4205256585 cites W2035638410 @default.
- W4205256585 cites W2036662279 @default.
- W4205256585 cites W2043211185 @default.
- W4205256585 cites W2047273920 @default.
- W4205256585 cites W2050632958 @default.
- W4205256585 cites W2055499960 @default.
- W4205256585 cites W2068772218 @default.
- W4205256585 cites W2073596150 @default.
- W4205256585 cites W2084051200 @default.
- W4205256585 cites W2090114183 @default.
- W4205256585 cites W2092076272 @default.
- W4205256585 cites W2092350553 @default.
- W4205256585 cites W2094188491 @default.
- W4205256585 cites W2096487969 @default.
- W4205256585 cites W2106558292 @default.
- W4205256585 cites W2107382545 @default.
- W4205256585 cites W2109109276 @default.
- W4205256585 cites W2110578118 @default.
- W4205256585 cites W2112796928 @default.
- W4205256585 cites W2115652908 @default.
- W4205256585 cites W2116035961 @default.
- W4205256585 cites W2128167784 @default.
- W4205256585 cites W2133830716 @default.
- W4205256585 cites W2135700676 @default.
- W4205256585 cites W2142770521 @default.
- W4205256585 cites W2151676963 @default.
- W4205256585 cites W2155592422 @default.
- W4205256585 cites W2158863866 @default.
- W4205256585 cites W2163216159 @default.
- W4205256585 cites W2165257968 @default.
- W4205256585 cites W2167572849 @default.
- W4205256585 cites W2169076560 @default.
- W4205256585 cites W2179921987 @default.
- W4205256585 cites W2209563422 @default.
- W4205256585 cites W2254905689 @default.
- W4205256585 cites W2293492584 @default.
- W4205256585 cites W2419175238 @default.
- W4205256585 cites W2485157966 @default.
- W4205256585 cites W2531534365 @default.
- W4205256585 cites W2568927912 @default.
- W4205256585 cites W2605236381 @default.
- W4205256585 cites W2615147641 @default.
- W4205256585 cites W2751448052 @default.
- W4205256585 cites W2765081049 @default.
- W4205256585 cites W2767349080 @default.
- W4205256585 cites W2767526854 @default.
- W4205256585 cites W2769979091 @default.
- W4205256585 cites W2775923832 @default.
- W4205256585 cites W2782719466 @default.
- W4205256585 cites W2783102654 @default.
- W4205256585 cites W2784110167 @default.
- W4205256585 cites W2790725224 @default.
- W4205256585 cites W2883327832 @default.
- W4205256585 cites W2884001105 @default.
- W4205256585 cites W2884356829 @default.
- W4205256585 cites W2886601870 @default.
- W4205256585 cites W2898092898 @default.
- W4205256585 cites W2907952156 @default.
- W4205256585 cites W2915854813 @default.
- W4205256585 cites W2919115771 @default.
- W4205256585 cites W2940261095 @default.
- W4205256585 cites W2943570943 @default.
- W4205256585 cites W2951696038 @default.
- W4205256585 cites W2952203743 @default.
- W4205256585 cites W2953050164 @default.
- W4205256585 cites W2963727897 @default.
- W4205256585 cites W2963995419 @default.
- W4205256585 cites W2966398653 @default.
- W4205256585 cites W2971836485 @default.
- W4205256585 cites W2976778558 @default.
- W4205256585 cites W2980640879 @default.
- W4205256585 cites W2992005611 @default.