Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205282458> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4205282458 endingPage "133604" @default.
- W4205282458 startingPage "133604" @default.
- W4205282458 abstract "Accurate identification and monitoring of fine dust are emerging as a primary global issue for addressing the harmful effects of fine dust on public health. Identifying the source of fine dust is indispensable for ensuring the human lifespan as well as preventing environmental disasters. Here a simple yet effective spark-induced plasma spectroscopy (SIPS) unit combined with deep learning for real-time classification is verified as a fast and precise PM (particulate matter) source identification technique. SIPS promises portable use, label-free detection, source identification, and chemical susceptibility in a single step with acceptable speed and accuracy. In particular, the densely connected convolutional networks (DenseNet) are used with measured spark-induced plasma emission datasets to identify PM sources at above 98%. The identification performance was compared with other common classification methods, and DenseNet with dropouts (30%), optimized batch size (16), and cyclic learning rate training emerged as the most promising source identification method." @default.
- W4205282458 created "2022-01-26" @default.
- W4205282458 creator A5001758575 @default.
- W4205282458 creator A5002116531 @default.
- W4205282458 creator A5041994665 @default.
- W4205282458 creator A5076637610 @default.
- W4205282458 creator A5089920118 @default.
- W4205282458 date "2022-04-01" @default.
- W4205282458 modified "2023-09-29" @default.
- W4205282458 title "Accurate real-time monitoring of fine dust using a densely connected convolutional networks with measured plasma emissions" @default.
- W4205282458 cites W1795251144 @default.
- W4205282458 cites W1846286285 @default.
- W4205282458 cites W1874641121 @default.
- W4205282458 cites W1930529906 @default.
- W4205282458 cites W1972322328 @default.
- W4205282458 cites W1984222195 @default.
- W4205282458 cites W2016961816 @default.
- W4205282458 cites W2022018373 @default.
- W4205282458 cites W2065623290 @default.
- W4205282458 cites W2066530709 @default.
- W4205282458 cites W2079388464 @default.
- W4205282458 cites W2093904881 @default.
- W4205282458 cites W2123785532 @default.
- W4205282458 cites W2155009288 @default.
- W4205282458 cites W2161113310 @default.
- W4205282458 cites W2219075557 @default.
- W4205282458 cites W2330591736 @default.
- W4205282458 cites W2344538199 @default.
- W4205282458 cites W2556243181 @default.
- W4205282458 cites W2604409408 @default.
- W4205282458 cites W2624276064 @default.
- W4205282458 cites W2900550733 @default.
- W4205282458 cites W2908942330 @default.
- W4205282458 cites W2945158973 @default.
- W4205282458 cites W2955228432 @default.
- W4205282458 cites W3008511810 @default.
- W4205282458 cites W3023707159 @default.
- W4205282458 cites W3033495855 @default.
- W4205282458 cites W3080804548 @default.
- W4205282458 cites W3110618811 @default.
- W4205282458 cites W3125964739 @default.
- W4205282458 cites W1995973038 @default.
- W4205282458 doi "https://doi.org/10.1016/j.chemosphere.2022.133604" @default.
- W4205282458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35033517" @default.
- W4205282458 hasPublicationYear "2022" @default.
- W4205282458 type Work @default.
- W4205282458 citedByCount "3" @default.
- W4205282458 countsByYear W42052824582022 @default.
- W4205282458 countsByYear W42052824582023 @default.
- W4205282458 crossrefType "journal-article" @default.
- W4205282458 hasAuthorship W4205282458A5001758575 @default.
- W4205282458 hasAuthorship W4205282458A5002116531 @default.
- W4205282458 hasAuthorship W4205282458A5041994665 @default.
- W4205282458 hasAuthorship W4205282458A5076637610 @default.
- W4205282458 hasAuthorship W4205282458A5089920118 @default.
- W4205282458 hasConcept C116834253 @default.
- W4205282458 hasConcept C154945302 @default.
- W4205282458 hasConcept C178790620 @default.
- W4205282458 hasConcept C185592680 @default.
- W4205282458 hasConcept C199360897 @default.
- W4205282458 hasConcept C24245907 @default.
- W4205282458 hasConcept C2781215313 @default.
- W4205282458 hasConcept C39432304 @default.
- W4205282458 hasConcept C41008148 @default.
- W4205282458 hasConcept C59822182 @default.
- W4205282458 hasConcept C86803240 @default.
- W4205282458 hasConceptScore W4205282458C116834253 @default.
- W4205282458 hasConceptScore W4205282458C154945302 @default.
- W4205282458 hasConceptScore W4205282458C178790620 @default.
- W4205282458 hasConceptScore W4205282458C185592680 @default.
- W4205282458 hasConceptScore W4205282458C199360897 @default.
- W4205282458 hasConceptScore W4205282458C24245907 @default.
- W4205282458 hasConceptScore W4205282458C2781215313 @default.
- W4205282458 hasConceptScore W4205282458C39432304 @default.
- W4205282458 hasConceptScore W4205282458C41008148 @default.
- W4205282458 hasConceptScore W4205282458C59822182 @default.
- W4205282458 hasConceptScore W4205282458C86803240 @default.
- W4205282458 hasLocation W42052824581 @default.
- W4205282458 hasLocation W42052824582 @default.
- W4205282458 hasOpenAccess W4205282458 @default.
- W4205282458 hasPrimaryLocation W42052824581 @default.
- W4205282458 hasRelatedWork W2013497748 @default.
- W4205282458 hasRelatedWork W2052077613 @default.
- W4205282458 hasRelatedWork W2110314654 @default.
- W4205282458 hasRelatedWork W2326757317 @default.
- W4205282458 hasRelatedWork W2384960344 @default.
- W4205282458 hasRelatedWork W2419112196 @default.
- W4205282458 hasRelatedWork W2568994960 @default.
- W4205282458 hasRelatedWork W2890019891 @default.
- W4205282458 hasRelatedWork W2899084033 @default.
- W4205282458 hasRelatedWork W3163145072 @default.
- W4205282458 hasVolume "293" @default.
- W4205282458 isParatext "false" @default.
- W4205282458 isRetracted "false" @default.
- W4205282458 workType "article" @default.