Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205295317> ?p ?o ?g. }
- W4205295317 abstract "Though flooding is seen as a common environmental threat globally, it has dramatically increased recently due to climate change, impacting underdeveloped and developing countries dangerously. For example, in most developing countries like Ghana, flooding has affected over four million people in terms of property damage, loss of lives, income and spread of diseases, resulting in economic harm beyond USD780 million. At least one major flood disaster does occur yearly. The recurring incidences of flooding and associated calamitous socio-economic risks and anticipated increase of its prevalence soon in cities of developing countries such as Ghana have necessitated an intelligence system to offer efficient and early warning of its occurrence. In this study, we explore the potential of the machine learning (ML) computing paradigm to propose a flooding prediction model. Specifically, four state-of-the-art ML algorithms, namely long short-term memory (LSTM), extreme gradient boosting (XGBoost), random forest (RF) and extremely randomised trees (Extra Trees), are used to implement four different flood prediction models. We measure the performance of our developed models with multiple statistical performance evaluators. The experimental results show the potential of the developed models for efficient and effective prediction of flooding. The merit of this study lies in the fact that it is the first to the best of our knowledge to use a combination of environmental factors from Ghana and machine learning algorithms to develop intelligent flood models to help stakeholders make informed decisions." @default.
- W4205295317 created "2022-01-25" @default.
- W4205295317 creator A5014080721 @default.
- W4205295317 creator A5019060398 @default.
- W4205295317 creator A5037105310 @default.
- W4205295317 creator A5037307130 @default.
- W4205295317 creator A5062695176 @default.
- W4205295317 creator A5064291326 @default.
- W4205295317 creator A5064716614 @default.
- W4205295317 creator A5068146656 @default.
- W4205295317 creator A5076595419 @default.
- W4205295317 creator A5077844914 @default.
- W4205295317 date "2021-12-21" @default.
- W4205295317 modified "2023-09-25" @default.
- W4205295317 title "Enhancing Flood Prediction using Ensemble and Deep Learning Techniques" @default.
- W4205295317 cites W1496671870 @default.
- W4205295317 cites W1976057199 @default.
- W4205295317 cites W2070380942 @default.
- W4205295317 cites W2076817254 @default.
- W4205295317 cites W2080109921 @default.
- W4205295317 cites W2795411881 @default.
- W4205295317 cites W2909188960 @default.
- W4205295317 cites W2912750253 @default.
- W4205295317 cites W2927941901 @default.
- W4205295317 cites W2940010972 @default.
- W4205295317 cites W2953521532 @default.
- W4205295317 cites W2965017818 @default.
- W4205295317 cites W2970297916 @default.
- W4205295317 cites W2985766090 @default.
- W4205295317 cites W2996701347 @default.
- W4205295317 cites W3002685882 @default.
- W4205295317 cites W3013731612 @default.
- W4205295317 cites W3042029410 @default.
- W4205295317 cites W3043654723 @default.
- W4205295317 cites W3048639327 @default.
- W4205295317 cites W3058842341 @default.
- W4205295317 cites W3087353363 @default.
- W4205295317 cites W3094744527 @default.
- W4205295317 cites W3096500336 @default.
- W4205295317 cites W3096638284 @default.
- W4205295317 cites W3096794381 @default.
- W4205295317 cites W3097540554 @default.
- W4205295317 cites W3099487920 @default.
- W4205295317 cites W3100256577 @default.
- W4205295317 cites W3108183784 @default.
- W4205295317 cites W3111294857 @default.
- W4205295317 cites W3119067073 @default.
- W4205295317 cites W3119728054 @default.
- W4205295317 cites W3121604086 @default.
- W4205295317 cites W3126320965 @default.
- W4205295317 cites W3129932793 @default.
- W4205295317 cites W3132114157 @default.
- W4205295317 cites W3133859983 @default.
- W4205295317 cites W3159674464 @default.
- W4205295317 cites W3195306343 @default.
- W4205295317 doi "https://doi.org/10.1109/acit53391.2021.9677084" @default.
- W4205295317 hasPublicationYear "2021" @default.
- W4205295317 type Work @default.
- W4205295317 citedByCount "1" @default.
- W4205295317 countsByYear W42052953172023 @default.
- W4205295317 crossrefType "proceedings-article" @default.
- W4205295317 hasAuthorship W4205295317A5014080721 @default.
- W4205295317 hasAuthorship W4205295317A5019060398 @default.
- W4205295317 hasAuthorship W4205295317A5037105310 @default.
- W4205295317 hasAuthorship W4205295317A5037307130 @default.
- W4205295317 hasAuthorship W4205295317A5062695176 @default.
- W4205295317 hasAuthorship W4205295317A5064291326 @default.
- W4205295317 hasAuthorship W4205295317A5064716614 @default.
- W4205295317 hasAuthorship W4205295317A5068146656 @default.
- W4205295317 hasAuthorship W4205295317A5076595419 @default.
- W4205295317 hasAuthorship W4205295317A5077844914 @default.
- W4205295317 hasConcept C119857082 @default.
- W4205295317 hasConcept C132651083 @default.
- W4205295317 hasConcept C154945302 @default.
- W4205295317 hasConcept C15744967 @default.
- W4205295317 hasConcept C162324750 @default.
- W4205295317 hasConcept C166957645 @default.
- W4205295317 hasConcept C169258074 @default.
- W4205295317 hasConcept C17744445 @default.
- W4205295317 hasConcept C186594467 @default.
- W4205295317 hasConcept C18903297 @default.
- W4205295317 hasConcept C199539241 @default.
- W4205295317 hasConcept C205649164 @default.
- W4205295317 hasConcept C2777363581 @default.
- W4205295317 hasConcept C41008148 @default.
- W4205295317 hasConcept C46686674 @default.
- W4205295317 hasConcept C50522688 @default.
- W4205295317 hasConcept C542102704 @default.
- W4205295317 hasConcept C74256435 @default.
- W4205295317 hasConcept C83864248 @default.
- W4205295317 hasConcept C84525736 @default.
- W4205295317 hasConcept C86803240 @default.
- W4205295317 hasConceptScore W4205295317C119857082 @default.
- W4205295317 hasConceptScore W4205295317C132651083 @default.
- W4205295317 hasConceptScore W4205295317C154945302 @default.
- W4205295317 hasConceptScore W4205295317C15744967 @default.
- W4205295317 hasConceptScore W4205295317C162324750 @default.
- W4205295317 hasConceptScore W4205295317C166957645 @default.
- W4205295317 hasConceptScore W4205295317C169258074 @default.
- W4205295317 hasConceptScore W4205295317C17744445 @default.