Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205342717> ?p ?o ?g. }
- W4205342717 endingPage "320" @default.
- W4205342717 startingPage "320" @default.
- W4205342717 abstract "The quantification of corneal endothelial cell (CEC) morphology using manual and semi-automatic software enables an objective assessment of corneal endothelial pathology. However, the procedure is tedious, subjective, and not widely applied in clinical practice. We have developed the CellsDeepNet system to automatically segment and analyse the CEC morphology. The CellsDeepNet system uses Contrast-Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of the CEC images and reduce the effects of non-uniform image illumination, 2D Double-Density Dual-Tree Complex Wavelet Transform (2DDD-TCWT) to reduce noise, Butterworth Bandpass filter to enhance the CEC edges, and moving average filter to adjust for brightness level. An improved version of U-Net was used to detect the boundaries of the CECs, regardless of the CEC size. CEC morphology was measured as mean cell density (MCD, cell/mm2), mean cell area (MCA, μm2), mean cell perimeter (MCP, μm), polymegathism (coefficient of CEC size variation), and pleomorphism (percentage of hexagonality coefficient). The CellsDeepNet system correlated highly significantly with the manual estimations for MCD (r = 0.94), MCA (r = 0.99), MCP (r = 0.99), polymegathism (r = 0.92), and pleomorphism (r = 0.86), with p < 0.0001 for all the extracted clinical features. The Bland–Altman plots showed excellent agreement. The percentage difference between the manual and automated estimations was superior for the CellsDeepNet system compared to the CEAS system and other state-of-the-art CEC segmentation systems on three large and challenging corneal endothelium image datasets captured using two different ophthalmic devices." @default.
- W4205342717 created "2022-01-26" @default.
- W4205342717 creator A5012372409 @default.
- W4205342717 creator A5027250953 @default.
- W4205342717 creator A5050197594 @default.
- W4205342717 creator A5050269424 @default.
- W4205342717 creator A5057682411 @default.
- W4205342717 creator A5073594851 @default.
- W4205342717 creator A5077397553 @default.
- W4205342717 creator A5091151166 @default.
- W4205342717 date "2022-01-20" @default.
- W4205342717 modified "2023-09-23" @default.
- W4205342717 title "CellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cells" @default.
- W4205342717 cites W1674518387 @default.
- W4205342717 cites W1963844593 @default.
- W4205342717 cites W1964859077 @default.
- W4205342717 cites W1976563834 @default.
- W4205342717 cites W1976735775 @default.
- W4205342717 cites W1990707665 @default.
- W4205342717 cites W2018333565 @default.
- W4205342717 cites W2040162472 @default.
- W4205342717 cites W2069371772 @default.
- W4205342717 cites W2073902423 @default.
- W4205342717 cites W2077925635 @default.
- W4205342717 cites W2081571847 @default.
- W4205342717 cites W2086843392 @default.
- W4205342717 cites W2100874022 @default.
- W4205342717 cites W2117925520 @default.
- W4205342717 cites W2129884363 @default.
- W4205342717 cites W2133665775 @default.
- W4205342717 cites W2136595407 @default.
- W4205342717 cites W2142078039 @default.
- W4205342717 cites W2146713507 @default.
- W4205342717 cites W2153571188 @default.
- W4205342717 cites W2157305458 @default.
- W4205342717 cites W2159697462 @default.
- W4205342717 cites W2240474615 @default.
- W4205342717 cites W2481588993 @default.
- W4205342717 cites W2506641901 @default.
- W4205342717 cites W2612383897 @default.
- W4205342717 cites W2759454618 @default.
- W4205342717 cites W2766373199 @default.
- W4205342717 cites W2789290087 @default.
- W4205342717 cites W2792730798 @default.
- W4205342717 cites W2802597987 @default.
- W4205342717 cites W2896440741 @default.
- W4205342717 cites W2901090565 @default.
- W4205342717 cites W3106324661 @default.
- W4205342717 doi "https://doi.org/10.3390/math10030320" @default.
- W4205342717 hasPublicationYear "2022" @default.
- W4205342717 type Work @default.
- W4205342717 citedByCount "2" @default.
- W4205342717 countsByYear W42053427172022 @default.
- W4205342717 countsByYear W42053427172023 @default.
- W4205342717 crossrefType "journal-article" @default.
- W4205342717 hasAuthorship W4205342717A5012372409 @default.
- W4205342717 hasAuthorship W4205342717A5027250953 @default.
- W4205342717 hasAuthorship W4205342717A5050197594 @default.
- W4205342717 hasAuthorship W4205342717A5050269424 @default.
- W4205342717 hasAuthorship W4205342717A5057682411 @default.
- W4205342717 hasAuthorship W4205342717A5073594851 @default.
- W4205342717 hasAuthorship W4205342717A5077397553 @default.
- W4205342717 hasAuthorship W4205342717A5091151166 @default.
- W4205342717 hasBestOaLocation W42053427171 @default.
- W4205342717 hasConcept C115961682 @default.
- W4205342717 hasConcept C118487528 @default.
- W4205342717 hasConcept C136943445 @default.
- W4205342717 hasConcept C142160229 @default.
- W4205342717 hasConcept C142724271 @default.
- W4205342717 hasConcept C148524875 @default.
- W4205342717 hasConcept C154945302 @default.
- W4205342717 hasConcept C204232928 @default.
- W4205342717 hasConcept C2775901793 @default.
- W4205342717 hasConcept C2776502983 @default.
- W4205342717 hasConcept C2776882836 @default.
- W4205342717 hasConcept C30387639 @default.
- W4205342717 hasConcept C33923547 @default.
- W4205342717 hasConcept C41008148 @default.
- W4205342717 hasConcept C71924100 @default.
- W4205342717 hasConcept C89600930 @default.
- W4205342717 hasConcept C9417928 @default.
- W4205342717 hasConceptScore W4205342717C115961682 @default.
- W4205342717 hasConceptScore W4205342717C118487528 @default.
- W4205342717 hasConceptScore W4205342717C136943445 @default.
- W4205342717 hasConceptScore W4205342717C142160229 @default.
- W4205342717 hasConceptScore W4205342717C142724271 @default.
- W4205342717 hasConceptScore W4205342717C148524875 @default.
- W4205342717 hasConceptScore W4205342717C154945302 @default.
- W4205342717 hasConceptScore W4205342717C204232928 @default.
- W4205342717 hasConceptScore W4205342717C2775901793 @default.
- W4205342717 hasConceptScore W4205342717C2776502983 @default.
- W4205342717 hasConceptScore W4205342717C2776882836 @default.
- W4205342717 hasConceptScore W4205342717C30387639 @default.
- W4205342717 hasConceptScore W4205342717C33923547 @default.
- W4205342717 hasConceptScore W4205342717C41008148 @default.
- W4205342717 hasConceptScore W4205342717C71924100 @default.
- W4205342717 hasConceptScore W4205342717C89600930 @default.
- W4205342717 hasConceptScore W4205342717C9417928 @default.