Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205349934> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4205349934 endingPage "547" @default.
- W4205349934 startingPage "535" @default.
- W4205349934 abstract "Because of the increasing workload, people are having several clinical examinations to determine their health status, resulting in limited time. Here, we present a healthful consuming device based on rule mining that can modify your parameter dependency and recommend the varieties of meals that will boost your fitness and assist you to avoid the types of meals that increase your risk for sicknesses. Using the meals database, the data mining technique is useful for gathering meal energy from breakfast, after breakfast, lunch, after lunch, dinner, after dinner, and bedtime for ninety days. The purpose of this study is to determine to mean random plasma glucose levels and h1bc levels using the Nathan, ADAG (A1C-derived average glucose), and DTTC (Dynamic Temporal and Tactile Cueing) methods. This system can identify and recognize food images, as well as keep track of the food items ingested by the user. Deep learning techniques are mostly utilized for picture recognition and categorization. The KNN (k-nearest neighbors algorithm) classification approach is used to determine if diabetes is normal, pre-diabetic, or chronic. This study employs deep learning and a smart camera app called “calorie mom” to track nutrition from meal photographs. In addition, the commonly used measures of divisions such as accuracy, sensitivity, uniqueness, and recalling diabetic dataset using Python 3 Jupyter Notebook were employed to evaluate the performance of a machine learning classifier." @default.
- W4205349934 created "2022-01-26" @default.
- W4205349934 creator A5038821318 @default.
- W4205349934 creator A5050025185 @default.
- W4205349934 creator A5052707829 @default.
- W4205349934 date "2022-01-01" @default.
- W4205349934 modified "2023-10-04" @default.
- W4205349934 title "To Control Diabetes Using Machine Learning Algorithm and Calorie Measurement Technique" @default.
- W4205349934 cites W2013791638 @default.
- W4205349934 cites W2120725344 @default.
- W4205349934 cites W2300288816 @default.
- W4205349934 cites W2775450699 @default.
- W4205349934 cites W2795391743 @default.
- W4205349934 cites W2908897820 @default.
- W4205349934 cites W2967160178 @default.
- W4205349934 cites W2969368242 @default.
- W4205349934 cites W2975391816 @default.
- W4205349934 cites W3032534675 @default.
- W4205349934 cites W3042567248 @default.
- W4205349934 cites W3178435079 @default.
- W4205349934 doi "https://doi.org/10.32604/iasc.2022.022976" @default.
- W4205349934 hasPublicationYear "2022" @default.
- W4205349934 type Work @default.
- W4205349934 citedByCount "0" @default.
- W4205349934 crossrefType "journal-article" @default.
- W4205349934 hasAuthorship W4205349934A5038821318 @default.
- W4205349934 hasAuthorship W4205349934A5050025185 @default.
- W4205349934 hasAuthorship W4205349934A5052707829 @default.
- W4205349934 hasBestOaLocation W42053499341 @default.
- W4205349934 hasConcept C111919701 @default.
- W4205349934 hasConcept C11413529 @default.
- W4205349934 hasConcept C119857082 @default.
- W4205349934 hasConcept C142724271 @default.
- W4205349934 hasConcept C154945302 @default.
- W4205349934 hasConcept C169258074 @default.
- W4205349934 hasConcept C2778345441 @default.
- W4205349934 hasConcept C2778476105 @default.
- W4205349934 hasConcept C41008148 @default.
- W4205349934 hasConcept C71924100 @default.
- W4205349934 hasConcept C94124525 @default.
- W4205349934 hasConcept C95623464 @default.
- W4205349934 hasConceptScore W4205349934C111919701 @default.
- W4205349934 hasConceptScore W4205349934C11413529 @default.
- W4205349934 hasConceptScore W4205349934C119857082 @default.
- W4205349934 hasConceptScore W4205349934C142724271 @default.
- W4205349934 hasConceptScore W4205349934C154945302 @default.
- W4205349934 hasConceptScore W4205349934C169258074 @default.
- W4205349934 hasConceptScore W4205349934C2778345441 @default.
- W4205349934 hasConceptScore W4205349934C2778476105 @default.
- W4205349934 hasConceptScore W4205349934C41008148 @default.
- W4205349934 hasConceptScore W4205349934C71924100 @default.
- W4205349934 hasConceptScore W4205349934C94124525 @default.
- W4205349934 hasConceptScore W4205349934C95623464 @default.
- W4205349934 hasIssue "1" @default.
- W4205349934 hasLocation W42053499341 @default.
- W4205349934 hasOpenAccess W4205349934 @default.
- W4205349934 hasPrimaryLocation W42053499341 @default.
- W4205349934 hasRelatedWork W2375851949 @default.
- W4205349934 hasRelatedWork W2911455822 @default.
- W4205349934 hasRelatedWork W3174196512 @default.
- W4205349934 hasRelatedWork W3211546796 @default.
- W4205349934 hasRelatedWork W4281616679 @default.
- W4205349934 hasRelatedWork W4293525103 @default.
- W4205349934 hasRelatedWork W4308191010 @default.
- W4205349934 hasRelatedWork W4318350883 @default.
- W4205349934 hasRelatedWork W4323021782 @default.
- W4205349934 hasRelatedWork W4387313636 @default.
- W4205349934 hasVolume "33" @default.
- W4205349934 isParatext "false" @default.
- W4205349934 isRetracted "false" @default.
- W4205349934 workType "article" @default.