Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205364106> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4205364106 endingPage "472" @default.
- W4205364106 startingPage "463" @default.
- W4205364106 abstract "Federated edge learning (FEL) deploys a machine learning algorithm by using devices distributed on the edge of a network, trains massive local data, uploads the local model to update the parameters after training, and performs alternate updating with global model parameters to reduce the pressure for uplink data transmission, prevent systematic time delay and ensure data security. This paper proposes that an optimal balance between time delay and energy consumption be achieved by optimizing the transmission power and bandwidth allocation based on user quality of experience (QoE) in a multi-server intelligent edge network. Given the limited computing capability of devices involved in FEL local training, the transmission power is modeled as a quasi-convex uplink power allocation (UPA) problem, and a lower energy consumption bandwidth allocation algorithm is proposed for solution-seeking. The proposed algorithm allocates appropriate power to the device by adapting the computing power and channel state of the device, thereby reducing energy consumption. As the theoretical deduction result suggests that additional bandwidth should be allocated to those devices with weak computing capabilities and poor channel conditions to realize minimal energy consumption within the restraint time. The simulation result indicates that, the maximum gain of the proposed algorithm can be optimized by 31% compared with the baseline." @default.
- W4205364106 created "2022-01-26" @default.
- W4205364106 creator A5006309429 @default.
- W4205364106 creator A5039076312 @default.
- W4205364106 creator A5064185364 @default.
- W4205364106 creator A5083258189 @default.
- W4205364106 creator A5084387088 @default.
- W4205364106 date "2021-12-01" @default.
- W4205364106 modified "2023-10-12" @default.
- W4205364106 title "Multi-server federated edge learning for low power consumption wireless resource allocation based on user QoE" @default.
- W4205364106 doi "https://doi.org/10.23919/jcn.2021.000040" @default.
- W4205364106 hasPublicationYear "2021" @default.
- W4205364106 type Work @default.
- W4205364106 citedByCount "6" @default.
- W4205364106 countsByYear W42053641062022 @default.
- W4205364106 countsByYear W42053641062023 @default.
- W4205364106 crossrefType "journal-article" @default.
- W4205364106 hasAuthorship W4205364106A5006309429 @default.
- W4205364106 hasAuthorship W4205364106A5039076312 @default.
- W4205364106 hasAuthorship W4205364106A5064185364 @default.
- W4205364106 hasAuthorship W4205364106A5083258189 @default.
- W4205364106 hasAuthorship W4205364106A5084387088 @default.
- W4205364106 hasBestOaLocation W42053641061 @default.
- W4205364106 hasConcept C111919701 @default.
- W4205364106 hasConcept C121332964 @default.
- W4205364106 hasConcept C138236772 @default.
- W4205364106 hasConcept C138660444 @default.
- W4205364106 hasConcept C149768029 @default.
- W4205364106 hasConcept C162307627 @default.
- W4205364106 hasConcept C163258240 @default.
- W4205364106 hasConcept C18903297 @default.
- W4205364106 hasConcept C2776257435 @default.
- W4205364106 hasConcept C2778456923 @default.
- W4205364106 hasConcept C2779333187 @default.
- W4205364106 hasConcept C2780165032 @default.
- W4205364106 hasConcept C31258907 @default.
- W4205364106 hasConcept C41008148 @default.
- W4205364106 hasConcept C5119721 @default.
- W4205364106 hasConcept C555944384 @default.
- W4205364106 hasConcept C56685638 @default.
- W4205364106 hasConcept C62520636 @default.
- W4205364106 hasConcept C76155785 @default.
- W4205364106 hasConcept C79403827 @default.
- W4205364106 hasConcept C79974875 @default.
- W4205364106 hasConcept C86803240 @default.
- W4205364106 hasConceptScore W4205364106C111919701 @default.
- W4205364106 hasConceptScore W4205364106C121332964 @default.
- W4205364106 hasConceptScore W4205364106C138236772 @default.
- W4205364106 hasConceptScore W4205364106C138660444 @default.
- W4205364106 hasConceptScore W4205364106C149768029 @default.
- W4205364106 hasConceptScore W4205364106C162307627 @default.
- W4205364106 hasConceptScore W4205364106C163258240 @default.
- W4205364106 hasConceptScore W4205364106C18903297 @default.
- W4205364106 hasConceptScore W4205364106C2776257435 @default.
- W4205364106 hasConceptScore W4205364106C2778456923 @default.
- W4205364106 hasConceptScore W4205364106C2779333187 @default.
- W4205364106 hasConceptScore W4205364106C2780165032 @default.
- W4205364106 hasConceptScore W4205364106C31258907 @default.
- W4205364106 hasConceptScore W4205364106C41008148 @default.
- W4205364106 hasConceptScore W4205364106C5119721 @default.
- W4205364106 hasConceptScore W4205364106C555944384 @default.
- W4205364106 hasConceptScore W4205364106C56685638 @default.
- W4205364106 hasConceptScore W4205364106C62520636 @default.
- W4205364106 hasConceptScore W4205364106C76155785 @default.
- W4205364106 hasConceptScore W4205364106C79403827 @default.
- W4205364106 hasConceptScore W4205364106C79974875 @default.
- W4205364106 hasConceptScore W4205364106C86803240 @default.
- W4205364106 hasIssue "6" @default.
- W4205364106 hasLocation W42053641061 @default.
- W4205364106 hasOpenAccess W4205364106 @default.
- W4205364106 hasPrimaryLocation W42053641061 @default.
- W4205364106 hasRelatedWork W3111395152 @default.
- W4205364106 hasRelatedWork W3216099748 @default.
- W4205364106 hasRelatedWork W4205963435 @default.
- W4205364106 hasRelatedWork W4238233472 @default.
- W4205364106 hasRelatedWork W4312996489 @default.
- W4205364106 hasRelatedWork W4313463218 @default.
- W4205364106 hasRelatedWork W4313526662 @default.
- W4205364106 hasRelatedWork W4319161913 @default.
- W4205364106 hasRelatedWork W4322761281 @default.
- W4205364106 hasRelatedWork W3106131444 @default.
- W4205364106 hasVolume "23" @default.
- W4205364106 isParatext "false" @default.
- W4205364106 isRetracted "false" @default.
- W4205364106 workType "article" @default.