Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205386707> ?p ?o ?g. }
- W4205386707 endingPage "103737" @default.
- W4205386707 startingPage "103737" @default.
- W4205386707 abstract "Leaf gas-exchange models are increasingly used to reconstruct ancient atmospheric carbon dioxide (CO2) concentrations. One of these widely used models, the Franks model, requires stomatal size (guard cell width and either guard cell length or pore length), whole-leaf stomatal density, and bulk-leaf carbon isotope composition (δ13C) from plant fossils. However, natural variations of these parameters within and across plant leaves have not been assessed closely, hindering the application of this model and the evaluation of its associated uncertainties. Here we investigate the range of variations of these parameters, and evaluate their impact on the output of the Franks model in three conifers (Metasequoia, Sequoia, and Taxodium). We introduce a modified cleared leaf method that allows accurate measurements of stomatal size. We show that among the stomatal size parameters, pore length is the most variable. Whole-leaf stomatal density can be accurately estimated in a representative area in the middle portion of a leaf. Variations of δ13C values are only slightly above analytical errors within a leaf and between leaves from a branchlet, but a ~ 1‰ negative shift of δ13C during early decay of Metasequoia leaf tissues was observed. Our measured ranges in pore length and whole-leaf stomatal density have the biggest influence on model estimated CO2. To improve model performance, we recommend (1) the use of our modified cleared leaf method to acquire accurate stomatal size and whole-leaf stomatal density measurements from the middle portion of a leaf located at the middle portion of a branchlet; (2) scaling pore length from guard cell length; and (3) a systematic correction of carbon isotope fractionation may be applicable if information regarding tissue decay and fossil preservation is available. We tested our recommendations by reconstructing CO2 from both extant and fossil materials. Franks model-derived CO2 based upon modern leaves collected in 2004 and 2020 (346 and 416 ppm) are close to their targets (378 and 414 ppm) whereas stomatal frequency methods substantially underestimate (285 and 341 ppm). Reconstructed CO2 from the middle Miocene Clarkia deposit (505 and 507 ppm for Metasequoia and Taxodium) are comparable with published results. We conclude that an improved cleared leaf method for accurate measurements of key stomatal parameters and a statistically-informed stomatal counting strategy will improve the performance of the Franks model for reconstructing CO2 using these conifers with wide distributions of fossil records in the Northern Hemisphere since the Cretaceous." @default.
- W4205386707 created "2022-01-26" @default.
- W4205386707 creator A5005938587 @default.
- W4205386707 creator A5007778025 @default.
- W4205386707 creator A5012278873 @default.
- W4205386707 creator A5018168945 @default.
- W4205386707 creator A5020392467 @default.
- W4205386707 creator A5039538995 @default.
- W4205386707 creator A5040546908 @default.
- W4205386707 creator A5058164073 @default.
- W4205386707 creator A5062891150 @default.
- W4205386707 creator A5080055330 @default.
- W4205386707 date "2022-02-01" @default.
- W4205386707 modified "2023-09-28" @default.
- W4205386707 title "Constraining conifer physiological parameters in leaf gas-exchange models for ancient CO2 reconstruction" @default.
- W4205386707 cites W1518419872 @default.
- W4205386707 cites W1577031841 @default.
- W4205386707 cites W1600222995 @default.
- W4205386707 cites W1782271813 @default.
- W4205386707 cites W1782552814 @default.
- W4205386707 cites W1964350279 @default.
- W4205386707 cites W1972887571 @default.
- W4205386707 cites W1978214947 @default.
- W4205386707 cites W1985808132 @default.
- W4205386707 cites W1986496123 @default.
- W4205386707 cites W1991035310 @default.
- W4205386707 cites W1995111370 @default.
- W4205386707 cites W2013023873 @default.
- W4205386707 cites W2016389475 @default.
- W4205386707 cites W2019912477 @default.
- W4205386707 cites W2020241488 @default.
- W4205386707 cites W2035322543 @default.
- W4205386707 cites W2038073886 @default.
- W4205386707 cites W2046857879 @default.
- W4205386707 cites W2052785711 @default.
- W4205386707 cites W2064795148 @default.
- W4205386707 cites W2070939574 @default.
- W4205386707 cites W2081625437 @default.
- W4205386707 cites W2082210100 @default.
- W4205386707 cites W2084413473 @default.
- W4205386707 cites W2089741862 @default.
- W4205386707 cites W2091658158 @default.
- W4205386707 cites W2102146303 @default.
- W4205386707 cites W2110906314 @default.
- W4205386707 cites W2114205557 @default.
- W4205386707 cites W2114500998 @default.
- W4205386707 cites W2116340358 @default.
- W4205386707 cites W2116411802 @default.
- W4205386707 cites W2125037370 @default.
- W4205386707 cites W2125122025 @default.
- W4205386707 cites W2125960767 @default.
- W4205386707 cites W2127824413 @default.
- W4205386707 cites W2132581662 @default.
- W4205386707 cites W2136149397 @default.
- W4205386707 cites W2137924370 @default.
- W4205386707 cites W2138879033 @default.
- W4205386707 cites W2143804637 @default.
- W4205386707 cites W2143962859 @default.
- W4205386707 cites W2146719438 @default.
- W4205386707 cites W2154167046 @default.
- W4205386707 cites W2156740118 @default.
- W4205386707 cites W2158405444 @default.
- W4205386707 cites W2159123610 @default.
- W4205386707 cites W2171283007 @default.
- W4205386707 cites W2246103875 @default.
- W4205386707 cites W2269704370 @default.
- W4205386707 cites W2335513524 @default.
- W4205386707 cites W2510303033 @default.
- W4205386707 cites W2568142664 @default.
- W4205386707 cites W2597976660 @default.
- W4205386707 cites W2605120720 @default.
- W4205386707 cites W2605183894 @default.
- W4205386707 cites W2610358958 @default.
- W4205386707 cites W2612216056 @default.
- W4205386707 cites W2625364930 @default.
- W4205386707 cites W2761119753 @default.
- W4205386707 cites W2795628039 @default.
- W4205386707 cites W2801300264 @default.
- W4205386707 cites W2883066342 @default.
- W4205386707 cites W2891379767 @default.
- W4205386707 cites W2900624472 @default.
- W4205386707 cites W2900863350 @default.
- W4205386707 cites W2922271198 @default.
- W4205386707 cites W2946237691 @default.
- W4205386707 cites W2983606184 @default.
- W4205386707 cites W2990024397 @default.
- W4205386707 cites W2998339522 @default.
- W4205386707 cites W3010751633 @default.
- W4205386707 cites W3024817623 @default.
- W4205386707 cites W3025424653 @default.
- W4205386707 cites W3084856838 @default.
- W4205386707 cites W3096938517 @default.
- W4205386707 cites W3111515015 @default.
- W4205386707 cites W3153062067 @default.
- W4205386707 cites W4237896184 @default.
- W4205386707 doi "https://doi.org/10.1016/j.gloplacha.2022.103737" @default.
- W4205386707 hasPublicationYear "2022" @default.
- W4205386707 type Work @default.