Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205401075> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4205401075 abstract "In market fake currency is the most important problem that speaks a lot. Due to the growth of technology, the fake currency production has been increased which degraded the economy of our country. Here the suggested method uses OpenCV to recognize whether the given note is original or fake. It consists of machine learning techniques that are carried out using suitable mechanisms.A fake currency detection method is introduced which uses the edge detection to detect the lines accurately and also accurately detect curves of acceptable notes. [9] Here we use a detector that is trained with the help of stored information which is similar to the one that is to be tested or compared later; within those modules, anchor lines are defined that are further depicted in subsequent test patterns. In order to provide training for the detector in offline a microprocessor is programmed. This is done with an sample currency obtained by scanning given note into our proposed method, here a frame like design is obtained by training image format. Then, notes similar to obtained frame are to be identified. Inside the template, the microprocessor determines anchor lines that are further depicted in that test format; it spin and moves the design before it matches to the training format, so that anchor lines which corresponds to the line can be identified in that trained dataset i.e. the pattern designed; and compares them with the test format to know if those anchor lines lies inside that test format. The system is proposed in a way that it shows if the currency is fake or it is original. We all know that Currency occupies an important place in our existence and hence it is very important for us to check its uniqueness. This system is useful in India because they use the paper currencies more." @default.
- W4205401075 created "2022-01-25" @default.
- W4205401075 creator A5042402640 @default.
- W4205401075 creator A5084022541 @default.
- W4205401075 creator A5088718933 @default.
- W4205401075 date "2021-10-08" @default.
- W4205401075 modified "2023-10-05" @default.
- W4205401075 title "Fake currency detection using Image processing" @default.
- W4205401075 cites W2128400733 @default.
- W4205401075 cites W2773971525 @default.
- W4205401075 doi "https://doi.org/10.1109/icaeca52838.2021.9675592" @default.
- W4205401075 hasPublicationYear "2021" @default.
- W4205401075 type Work @default.
- W4205401075 citedByCount "5" @default.
- W4205401075 countsByYear W42054010752022 @default.
- W4205401075 countsByYear W42054010752023 @default.
- W4205401075 crossrefType "proceedings-article" @default.
- W4205401075 hasAuthorship W4205401075A5042402640 @default.
- W4205401075 hasAuthorship W4205401075A5084022541 @default.
- W4205401075 hasAuthorship W4205401075A5088718933 @default.
- W4205401075 hasConcept C115961682 @default.
- W4205401075 hasConcept C126042441 @default.
- W4205401075 hasConcept C141121606 @default.
- W4205401075 hasConcept C151730666 @default.
- W4205401075 hasConcept C154945302 @default.
- W4205401075 hasConcept C162324750 @default.
- W4205401075 hasConcept C185592680 @default.
- W4205401075 hasConcept C193536780 @default.
- W4205401075 hasConcept C198531522 @default.
- W4205401075 hasConcept C2777267654 @default.
- W4205401075 hasConcept C2780728072 @default.
- W4205401075 hasConcept C31972630 @default.
- W4205401075 hasConcept C41008148 @default.
- W4205401075 hasConcept C43617362 @default.
- W4205401075 hasConcept C556758197 @default.
- W4205401075 hasConcept C76155785 @default.
- W4205401075 hasConcept C86803240 @default.
- W4205401075 hasConcept C9390403 @default.
- W4205401075 hasConcept C9417928 @default.
- W4205401075 hasConcept C94915269 @default.
- W4205401075 hasConceptScore W4205401075C115961682 @default.
- W4205401075 hasConceptScore W4205401075C126042441 @default.
- W4205401075 hasConceptScore W4205401075C141121606 @default.
- W4205401075 hasConceptScore W4205401075C151730666 @default.
- W4205401075 hasConceptScore W4205401075C154945302 @default.
- W4205401075 hasConceptScore W4205401075C162324750 @default.
- W4205401075 hasConceptScore W4205401075C185592680 @default.
- W4205401075 hasConceptScore W4205401075C193536780 @default.
- W4205401075 hasConceptScore W4205401075C198531522 @default.
- W4205401075 hasConceptScore W4205401075C2777267654 @default.
- W4205401075 hasConceptScore W4205401075C2780728072 @default.
- W4205401075 hasConceptScore W4205401075C31972630 @default.
- W4205401075 hasConceptScore W4205401075C41008148 @default.
- W4205401075 hasConceptScore W4205401075C43617362 @default.
- W4205401075 hasConceptScore W4205401075C556758197 @default.
- W4205401075 hasConceptScore W4205401075C76155785 @default.
- W4205401075 hasConceptScore W4205401075C86803240 @default.
- W4205401075 hasConceptScore W4205401075C9390403 @default.
- W4205401075 hasConceptScore W4205401075C9417928 @default.
- W4205401075 hasConceptScore W4205401075C94915269 @default.
- W4205401075 hasLocation W42054010751 @default.
- W4205401075 hasOpenAccess W4205401075 @default.
- W4205401075 hasPrimaryLocation W42054010751 @default.
- W4205401075 hasRelatedWork W1967456564 @default.
- W4205401075 hasRelatedWork W2045615376 @default.
- W4205401075 hasRelatedWork W2080322084 @default.
- W4205401075 hasRelatedWork W2164309059 @default.
- W4205401075 hasRelatedWork W23451984 @default.
- W4205401075 hasRelatedWork W2348077077 @default.
- W4205401075 hasRelatedWork W2372904789 @default.
- W4205401075 hasRelatedWork W2390117616 @default.
- W4205401075 hasRelatedWork W4250616939 @default.
- W4205401075 hasRelatedWork W2182370873 @default.
- W4205401075 isParatext "false" @default.
- W4205401075 isRetracted "false" @default.
- W4205401075 workType "article" @default.