Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205407518> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4205407518 abstract "The lack of sleep (typically <6 hours a night) or driving for a long time are the reasons of drowsiness driving and caused serious traffic accidents. With pandemic of the COVID-19, drivers are wearing masks to prevent infection from it, which makes visual-based drowsiness detection methods difficult. This paper presents an EEG-based driver drowsiness estimation method using deep learning and attention mechanism. First of all, an 8-channels EEG collection hat is used to acquire the EEG signals in the simulation scenario of drowsiness driving and normal driving. Then the EEG signals are pre-processed by using the linear filter and wavelet threshold denoising. Secondly, the neural network based on attention mechanism and deep residual network (ResNet) is trained to classify the EEG signals. Finally, an early warning module is designed to sound an alarm if the driver is judged as drowsy. The system was tested under simulated driving environment and the drowsiness detection accuracy of the test set was 93.35%. Drowsiness warning simulation also verified the effectiveness of proposed early warning module." @default.
- W4205407518 created "2022-01-26" @default.
- W4205407518 creator A5001851501 @default.
- W4205407518 creator A5002571973 @default.
- W4205407518 creator A5033340314 @default.
- W4205407518 creator A5034079549 @default.
- W4205407518 creator A5057598821 @default.
- W4205407518 creator A5072159453 @default.
- W4205407518 creator A5080654277 @default.
- W4205407518 date "2021-07-11" @default.
- W4205407518 modified "2023-09-27" @default.
- W4205407518 title "EEG-based System Using Deep Learning and Attention Mechanism for Driver Drowsiness Detection" @default.
- W4205407518 cites W1904701389 @default.
- W4205407518 cites W2005305331 @default.
- W4205407518 cites W2025623975 @default.
- W4205407518 cites W2045033781 @default.
- W4205407518 cites W2058569601 @default.
- W4205407518 cites W2070693695 @default.
- W4205407518 cites W2142727917 @default.
- W4205407518 cites W2146976664 @default.
- W4205407518 cites W2172717914 @default.
- W4205407518 cites W2194775991 @default.
- W4205407518 cites W2211192759 @default.
- W4205407518 cites W2286439238 @default.
- W4205407518 cites W2594079185 @default.
- W4205407518 cites W2783618220 @default.
- W4205407518 cites W2789261132 @default.
- W4205407518 cites W2896841774 @default.
- W4205407518 cites W2971141067 @default.
- W4205407518 cites W3113462926 @default.
- W4205407518 cites W3121810080 @default.
- W4205407518 doi "https://doi.org/10.1109/ivworkshops54471.2021.9669234" @default.
- W4205407518 hasPublicationYear "2021" @default.
- W4205407518 type Work @default.
- W4205407518 citedByCount "3" @default.
- W4205407518 countsByYear W42054075182022 @default.
- W4205407518 countsByYear W42054075182023 @default.
- W4205407518 crossrefType "proceedings-article" @default.
- W4205407518 hasAuthorship W4205407518A5001851501 @default.
- W4205407518 hasAuthorship W4205407518A5002571973 @default.
- W4205407518 hasAuthorship W4205407518A5033340314 @default.
- W4205407518 hasAuthorship W4205407518A5034079549 @default.
- W4205407518 hasAuthorship W4205407518A5057598821 @default.
- W4205407518 hasAuthorship W4205407518A5072159453 @default.
- W4205407518 hasAuthorship W4205407518A5080654277 @default.
- W4205407518 hasConcept C108583219 @default.
- W4205407518 hasConcept C118552586 @default.
- W4205407518 hasConcept C127413603 @default.
- W4205407518 hasConcept C146978453 @default.
- W4205407518 hasConcept C153180895 @default.
- W4205407518 hasConcept C154945302 @default.
- W4205407518 hasConcept C15744967 @default.
- W4205407518 hasConcept C2776836416 @default.
- W4205407518 hasConcept C2779119184 @default.
- W4205407518 hasConcept C31972630 @default.
- W4205407518 hasConcept C41008148 @default.
- W4205407518 hasConcept C44154836 @default.
- W4205407518 hasConcept C522805319 @default.
- W4205407518 hasConcept C79403827 @default.
- W4205407518 hasConceptScore W4205407518C108583219 @default.
- W4205407518 hasConceptScore W4205407518C118552586 @default.
- W4205407518 hasConceptScore W4205407518C127413603 @default.
- W4205407518 hasConceptScore W4205407518C146978453 @default.
- W4205407518 hasConceptScore W4205407518C153180895 @default.
- W4205407518 hasConceptScore W4205407518C154945302 @default.
- W4205407518 hasConceptScore W4205407518C15744967 @default.
- W4205407518 hasConceptScore W4205407518C2776836416 @default.
- W4205407518 hasConceptScore W4205407518C2779119184 @default.
- W4205407518 hasConceptScore W4205407518C31972630 @default.
- W4205407518 hasConceptScore W4205407518C41008148 @default.
- W4205407518 hasConceptScore W4205407518C44154836 @default.
- W4205407518 hasConceptScore W4205407518C522805319 @default.
- W4205407518 hasConceptScore W4205407518C79403827 @default.
- W4205407518 hasFunder F4320321001 @default.
- W4205407518 hasFunder F4320322638 @default.
- W4205407518 hasFunder F4320337504 @default.
- W4205407518 hasLocation W42054075181 @default.
- W4205407518 hasOpenAccess W4205407518 @default.
- W4205407518 hasPrimaryLocation W42054075181 @default.
- W4205407518 hasRelatedWork W2733060750 @default.
- W4205407518 hasRelatedWork W2738221750 @default.
- W4205407518 hasRelatedWork W2766146978 @default.
- W4205407518 hasRelatedWork W2773120646 @default.
- W4205407518 hasRelatedWork W3156786002 @default.
- W4205407518 hasRelatedWork W4211209597 @default.
- W4205407518 hasRelatedWork W4220775285 @default.
- W4205407518 hasRelatedWork W4245792239 @default.
- W4205407518 hasRelatedWork W4317987726 @default.
- W4205407518 hasRelatedWork W3108696707 @default.
- W4205407518 isParatext "false" @default.
- W4205407518 isRetracted "false" @default.
- W4205407518 workType "article" @default.