Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205429713> ?p ?o ?g. }
- W4205429713 abstract "Advances in energy harvesting technologies present prospective concepts to capture and store energy from the environment and use it to power sensors used in Structural Health Monitoring (SHM) systems. Among many others, ambient vibrations are a ubiquitous source of energy that has the potential to charge low-powered sensors attached to aircraft structures. This study aims at designing a vibrational-based energy harvesting system consisting of Macro-Fiber Composite (MFC) patches bonded to a cantilever beam with optimal design parameters. As a base model, an electromechanically coupled Finite Element (FE) model is first developed to predict the open-source voltage when subjected to input excitation, which is validated using previous experimental data. Subsequently, the harvested power is found by simulating an electrical circuit consisting of a full-bridge rectifier and an external capacitor, using Electronic Design Automation (EDA) simulation. A Deep learning-based optimization is proposed to calculate the optimal mechanical and electrical parameters, resulting in the maximum number of resonant peaks within a specified frequency range, and also to maximize the power generated from higher-order resonant peaks. Using the developed FE model, a large number of data is generated to train a Deep Neural Network (DNN), which has the capability to find the optimal design parameters for the specified objective. This approach aims at replacing conventional optimization techniques and to obtain an optimal design of broadband vibrational-based energy harvester in a more computationally efficient manner." @default.
- W4205429713 created "2022-01-25" @default.
- W4205429713 creator A5001767231 @default.
- W4205429713 creator A5006937594 @default.
- W4205429713 creator A5018061519 @default.
- W4205429713 creator A5018757830 @default.
- W4205429713 creator A5031103594 @default.
- W4205429713 creator A5032736494 @default.
- W4205429713 creator A5056940011 @default.
- W4205429713 creator A5082846248 @default.
- W4205429713 date "2022-01-03" @default.
- W4205429713 modified "2023-09-27" @default.
- W4205429713 title "Deep Learning-Based Optimization of Piezoelectric Vibration Energy Harvesters" @default.
- W4205429713 cites W1970485611 @default.
- W4205429713 cites W1992609802 @default.
- W4205429713 cites W1993378267 @default.
- W4205429713 cites W1996380690 @default.
- W4205429713 cites W2003252765 @default.
- W4205429713 cites W2031525961 @default.
- W4205429713 cites W2043935462 @default.
- W4205429713 cites W2048370585 @default.
- W4205429713 cites W2060980703 @default.
- W4205429713 cites W2073117112 @default.
- W4205429713 cites W2083190254 @default.
- W4205429713 cites W2097627266 @default.
- W4205429713 cites W2104250954 @default.
- W4205429713 cites W2112832036 @default.
- W4205429713 cites W2122737577 @default.
- W4205429713 cites W2128401319 @default.
- W4205429713 cites W2130590018 @default.
- W4205429713 cites W2145035165 @default.
- W4205429713 cites W2170280734 @default.
- W4205429713 cites W2567182331 @default.
- W4205429713 cites W272489241 @default.
- W4205429713 cites W2757214378 @default.
- W4205429713 cites W2783534396 @default.
- W4205429713 cites W2785071288 @default.
- W4205429713 cites W2810716892 @default.
- W4205429713 cites W2811467806 @default.
- W4205429713 cites W2917035710 @default.
- W4205429713 cites W2922366618 @default.
- W4205429713 cites W2963334358 @default.
- W4205429713 cites W2976683842 @default.
- W4205429713 cites W2989257984 @default.
- W4205429713 cites W3014350516 @default.
- W4205429713 cites W3021029423 @default.
- W4205429713 cites W3108755712 @default.
- W4205429713 cites W3158787536 @default.
- W4205429713 doi "https://doi.org/10.2514/6.2022-2142" @default.
- W4205429713 hasPublicationYear "2022" @default.
- W4205429713 type Work @default.
- W4205429713 citedByCount "0" @default.
- W4205429713 crossrefType "proceedings-article" @default.
- W4205429713 hasAuthorship W4205429713A5001767231 @default.
- W4205429713 hasAuthorship W4205429713A5006937594 @default.
- W4205429713 hasAuthorship W4205429713A5018061519 @default.
- W4205429713 hasAuthorship W4205429713A5018757830 @default.
- W4205429713 hasAuthorship W4205429713A5031103594 @default.
- W4205429713 hasAuthorship W4205429713A5032736494 @default.
- W4205429713 hasAuthorship W4205429713A5056940011 @default.
- W4205429713 hasAuthorship W4205429713A5082846248 @default.
- W4205429713 hasConcept C101518730 @default.
- W4205429713 hasConcept C116615679 @default.
- W4205429713 hasConcept C119599485 @default.
- W4205429713 hasConcept C119857082 @default.
- W4205429713 hasConcept C121332964 @default.
- W4205429713 hasConcept C127413603 @default.
- W4205429713 hasConcept C141354745 @default.
- W4205429713 hasConcept C146978453 @default.
- W4205429713 hasConcept C147168706 @default.
- W4205429713 hasConcept C154945302 @default.
- W4205429713 hasConcept C163258240 @default.
- W4205429713 hasConcept C165801399 @default.
- W4205429713 hasConcept C186370098 @default.
- W4205429713 hasConcept C186394612 @default.
- W4205429713 hasConcept C198394728 @default.
- W4205429713 hasConcept C24326235 @default.
- W4205429713 hasConcept C24890656 @default.
- W4205429713 hasConcept C41008148 @default.
- W4205429713 hasConcept C50100734 @default.
- W4205429713 hasConcept C50644808 @default.
- W4205429713 hasConcept C62520636 @default.
- W4205429713 hasConcept C86582703 @default.
- W4205429713 hasConceptScore W4205429713C101518730 @default.
- W4205429713 hasConceptScore W4205429713C116615679 @default.
- W4205429713 hasConceptScore W4205429713C119599485 @default.
- W4205429713 hasConceptScore W4205429713C119857082 @default.
- W4205429713 hasConceptScore W4205429713C121332964 @default.
- W4205429713 hasConceptScore W4205429713C127413603 @default.
- W4205429713 hasConceptScore W4205429713C141354745 @default.
- W4205429713 hasConceptScore W4205429713C146978453 @default.
- W4205429713 hasConceptScore W4205429713C147168706 @default.
- W4205429713 hasConceptScore W4205429713C154945302 @default.
- W4205429713 hasConceptScore W4205429713C163258240 @default.
- W4205429713 hasConceptScore W4205429713C165801399 @default.
- W4205429713 hasConceptScore W4205429713C186370098 @default.
- W4205429713 hasConceptScore W4205429713C186394612 @default.
- W4205429713 hasConceptScore W4205429713C198394728 @default.
- W4205429713 hasConceptScore W4205429713C24326235 @default.
- W4205429713 hasConceptScore W4205429713C24890656 @default.