Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205432943> ?p ?o ?g. }
- W4205432943 abstract "<sec> <title>BACKGROUND</title> Interoperability and secondary use of data is a challenge in health care. Specifically, the reuse of clinical free text remains an unresolved problem. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) has become the universal language of health care and presents characteristics of a natural language. Its use to represent clinical free text could constitute a solution to improve interoperability. </sec> <sec> <title>OBJECTIVE</title> Although the use of SNOMED and SNOMED CT has already been reviewed, its specific use in processing and representing unstructured data such as clinical free text has not. This review aims to better understand SNOMED CT's use for representing free text in medicine. </sec> <sec> <title>METHODS</title> A scoping review was performed on the topic by searching MEDLINE, Embase, and Web of Science for publications featuring free-text processing and SNOMED CT. A recursive reference review was conducted to broaden the scope of research. The review covered the type of processed data, the targeted language, the goal of the terminology binding, the method used and, when appropriate, the specific software used. </sec> <sec> <title>RESULTS</title> In total, 76 publications were selected for an extensive study. The language targeted by publications was 91% (n=69) English. The most frequent types of documents for which the terminology was used are complementary exam reports (n=18, 24%) and narrative notes (n=16, 21%). Mapping to SNOMED CT was the final goal of the research in 21% (n=16) of publications and a part of the final goal in 33% (n=25). The main objectives of mapping are information extraction (n=44, 39%), feature in a classification task (n=26, 23%), and data normalization (n=23, 20%). The method used was rule-based in 70% (n=53) of publications, hybrid in 11% (n=8), and machine learning in 5% (n=4). In total, 12 different software packages were used to map text to SNOMED CT concepts, the most frequent being Medtex, Mayo Clinic Vocabulary Server, and Medical Text Extraction Reasoning and Mapping System. Full terminology was used in 64% (n=49) of publications, whereas only a subset was used in 30% (n=23) of publications. Postcoordination was proposed in 17% (n=13) of publications, and only 5% (n=4) of publications specifically mentioned the use of the compositional grammar. </sec> <sec> <title>CONCLUSIONS</title> SNOMED CT has been largely used to represent free-text data, most frequently with rule-based approaches, in English. However, currently, there is no easy solution for mapping free text to this terminology and to perform automatic postcoordination. Most solutions conceive SNOMED CT as a simple terminology rather than as a compositional bag of ontologies. Since 2012, the number of publications on this subject per year has decreased. However, the need for formal semantic representation of free text in health care is high, and automatic encoding into a compositional ontology could be a solution. </sec>" @default.
- W4205432943 created "2022-01-26" @default.
- W4205432943 creator A5012347958 @default.
- W4205432943 creator A5016557721 @default.
- W4205432943 creator A5064859584 @default.
- W4205432943 creator A5083072992 @default.
- W4205432943 date "2020-09-28" @default.
- W4205432943 modified "2023-09-27" @default.
- W4205432943 title "Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review (Preprint)" @default.
- W4205432943 cites W1481389199 @default.
- W4205432943 cites W150871042 @default.
- W4205432943 cites W1772646688 @default.
- W4205432943 cites W1871067837 @default.
- W4205432943 cites W1971013794 @default.
- W4205432943 cites W1979945892 @default.
- W4205432943 cites W1985875906 @default.
- W4205432943 cites W2014176958 @default.
- W4205432943 cites W2018175819 @default.
- W4205432943 cites W2037835736 @default.
- W4205432943 cites W2040298842 @default.
- W4205432943 cites W2047452505 @default.
- W4205432943 cites W2053449218 @default.
- W4205432943 cites W2053715834 @default.
- W4205432943 cites W2061848042 @default.
- W4205432943 cites W2096252540 @default.
- W4205432943 cites W2100364461 @default.
- W4205432943 cites W2106797966 @default.
- W4205432943 cites W2111519552 @default.
- W4205432943 cites W2114668172 @default.
- W4205432943 cites W2122402213 @default.
- W4205432943 cites W2139865360 @default.
- W4205432943 cites W2145522203 @default.
- W4205432943 cites W2146089916 @default.
- W4205432943 cites W2150730101 @default.
- W4205432943 cites W2150838562 @default.
- W4205432943 cites W2166861608 @default.
- W4205432943 cites W2168041406 @default.
- W4205432943 cites W2179627207 @default.
- W4205432943 cites W2338526423 @default.
- W4205432943 cites W2429026656 @default.
- W4205432943 cites W2604748391 @default.
- W4205432943 cites W2891469329 @default.
- W4205432943 cites W4243822621 @default.
- W4205432943 cites W4246442550 @default.
- W4205432943 cites W4247056187 @default.
- W4205432943 cites W4247073868 @default.
- W4205432943 cites W4294215472 @default.
- W4205432943 cites W580573057 @default.
- W4205432943 cites W99104906 @default.
- W4205432943 doi "https://doi.org/10.2196/preprints.24594" @default.
- W4205432943 hasPublicationYear "2020" @default.
- W4205432943 type Work @default.
- W4205432943 citedByCount "1" @default.
- W4205432943 countsByYear W42054329432021 @default.
- W4205432943 crossrefType "posted-content" @default.
- W4205432943 hasAuthorship W4205432943A5012347958 @default.
- W4205432943 hasAuthorship W4205432943A5016557721 @default.
- W4205432943 hasAuthorship W4205432943A5064859584 @default.
- W4205432943 hasAuthorship W4205432943A5083072992 @default.
- W4205432943 hasBestOaLocation W42054329432 @default.
- W4205432943 hasConcept C136764020 @default.
- W4205432943 hasConcept C138885662 @default.
- W4205432943 hasConcept C154945302 @default.
- W4205432943 hasConcept C160735492 @default.
- W4205432943 hasConcept C162324750 @default.
- W4205432943 hasConcept C17744445 @default.
- W4205432943 hasConcept C199539241 @default.
- W4205432943 hasConcept C20136886 @default.
- W4205432943 hasConcept C206497026 @default.
- W4205432943 hasConcept C23123220 @default.
- W4205432943 hasConcept C2779473830 @default.
- W4205432943 hasConcept C3018949938 @default.
- W4205432943 hasConcept C41008148 @default.
- W4205432943 hasConcept C41895202 @default.
- W4205432943 hasConcept C44681071 @default.
- W4205432943 hasConcept C50522688 @default.
- W4205432943 hasConcept C547195049 @default.
- W4205432943 hasConcept C71924100 @default.
- W4205432943 hasConceptScore W4205432943C136764020 @default.
- W4205432943 hasConceptScore W4205432943C138885662 @default.
- W4205432943 hasConceptScore W4205432943C154945302 @default.
- W4205432943 hasConceptScore W4205432943C160735492 @default.
- W4205432943 hasConceptScore W4205432943C162324750 @default.
- W4205432943 hasConceptScore W4205432943C17744445 @default.
- W4205432943 hasConceptScore W4205432943C199539241 @default.
- W4205432943 hasConceptScore W4205432943C20136886 @default.
- W4205432943 hasConceptScore W4205432943C206497026 @default.
- W4205432943 hasConceptScore W4205432943C23123220 @default.
- W4205432943 hasConceptScore W4205432943C2779473830 @default.
- W4205432943 hasConceptScore W4205432943C3018949938 @default.
- W4205432943 hasConceptScore W4205432943C41008148 @default.
- W4205432943 hasConceptScore W4205432943C41895202 @default.
- W4205432943 hasConceptScore W4205432943C44681071 @default.
- W4205432943 hasConceptScore W4205432943C50522688 @default.
- W4205432943 hasConceptScore W4205432943C547195049 @default.
- W4205432943 hasConceptScore W4205432943C71924100 @default.
- W4205432943 hasLocation W42054329431 @default.
- W4205432943 hasLocation W42054329432 @default.
- W4205432943 hasOpenAccess W4205432943 @default.
- W4205432943 hasPrimaryLocation W42054329431 @default.