Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205447000> ?p ?o ?g. }
- W4205447000 endingPage "104029" @default.
- W4205447000 startingPage "104029" @default.
- W4205447000 abstract "The average annual electricity consumption of the subway stations in China is 1.8–2.3 million kWh, of which ventilation and air-conditioning systems account for approximately 46%. Optimizing the ventilation and air-conditioning control system is an important energy-saving method in urban rail transit. This study applied the technologies of neural network and fuzzy control to the load forecast and the control of the air-conditioning system in subway stations to reduce the energy consumption of the air-conditioning system. Firstly, the energy consumption of the air-conditioning system was calculated by TRNSYS software. Then, a load forecast model of the air-conditioning system was established using neural network technology, and the accuracy of the load forecast model was verified through comparative analysis. Finally, the predictive fuzzy control model of the air-conditioning system was established. The temperature and the humidity in the subway station with the predictive fuzzy control and the traditional temperature control were studied, as well as the energy consumption of the air-conditioning system. Results showed that the neural network technology could effectively predict the load of the subway station's air-conditioning system. The predictive fuzzy control could offset the delay of control quantity adjustment of the air-conditioning system to a certain extent. Compared with the traditional temperature control method, the temperature fluctuation of the station hall and platform under predictive fuzzy control is smaller, and the total energy consumption of the air-conditioning system in summer is reduced by 7.13%. This study provides a reference for reducing the energy consumption of the air-conditioning system in the urban rail transit stations. • Optimizing the air-conditioning control system is an important energy-saving method in urban rail transit. • This study applied neural network and fuzzy control to the air-conditioning system's load forecast and control. • Neural network technology could effectively predict the subway station's air-conditioning system load. • Using predictive fuzzy control can reduce the temperature fluctuation in subway stations. • The total energy consumption of air-conditioning system in summer is reduced by 7.13% under predictive fuzzy control." @default.
- W4205447000 created "2022-01-25" @default.
- W4205447000 creator A5002624611 @default.
- W4205447000 creator A5007293629 @default.
- W4205447000 creator A5018472471 @default.
- W4205447000 creator A5023293408 @default.
- W4205447000 creator A5062307152 @default.
- W4205447000 date "2022-05-01" @default.
- W4205447000 modified "2023-10-18" @default.
- W4205447000 title "Load forecast and fuzzy control of the air-conditioning systems at the subway stations" @default.
- W4205447000 cites W1609440246 @default.
- W4205447000 cites W1969853910 @default.
- W4205447000 cites W1973944436 @default.
- W4205447000 cites W1981967873 @default.
- W4205447000 cites W1992562413 @default.
- W4205447000 cites W2030582429 @default.
- W4205447000 cites W2052428053 @default.
- W4205447000 cites W2060774500 @default.
- W4205447000 cites W2065963077 @default.
- W4205447000 cites W2072715865 @default.
- W4205447000 cites W2086048010 @default.
- W4205447000 cites W2092998733 @default.
- W4205447000 cites W2108152153 @default.
- W4205447000 cites W2128731188 @default.
- W4205447000 cites W2156302255 @default.
- W4205447000 cites W2169358992 @default.
- W4205447000 cites W2284381870 @default.
- W4205447000 cites W2607484762 @default.
- W4205447000 cites W2750851831 @default.
- W4205447000 cites W2751624278 @default.
- W4205447000 cites W2810048786 @default.
- W4205447000 cites W2890813069 @default.
- W4205447000 cites W2907143905 @default.
- W4205447000 cites W3027885907 @default.
- W4205447000 cites W3034174159 @default.
- W4205447000 cites W3081753596 @default.
- W4205447000 cites W3091580135 @default.
- W4205447000 cites W3105222808 @default.
- W4205447000 doi "https://doi.org/10.1016/j.jobe.2022.104029" @default.
- W4205447000 hasPublicationYear "2022" @default.
- W4205447000 type Work @default.
- W4205447000 citedByCount "4" @default.
- W4205447000 countsByYear W42054470002022 @default.
- W4205447000 countsByYear W42054470002023 @default.
- W4205447000 crossrefType "journal-article" @default.
- W4205447000 hasAuthorship W4205447000A5002624611 @default.
- W4205447000 hasAuthorship W4205447000A5007293629 @default.
- W4205447000 hasAuthorship W4205447000A5018472471 @default.
- W4205447000 hasAuthorship W4205447000A5023293408 @default.
- W4205447000 hasAuthorship W4205447000A5062307152 @default.
- W4205447000 hasConcept C103742991 @default.
- W4205447000 hasConcept C105795698 @default.
- W4205447000 hasConcept C127413603 @default.
- W4205447000 hasConcept C154945302 @default.
- W4205447000 hasConcept C171146098 @default.
- W4205447000 hasConcept C178802073 @default.
- W4205447000 hasConcept C195975749 @default.
- W4205447000 hasConcept C2775924081 @default.
- W4205447000 hasConcept C33923547 @default.
- W4205447000 hasConcept C39432304 @default.
- W4205447000 hasConcept C41008148 @default.
- W4205447000 hasConcept C42475967 @default.
- W4205447000 hasConcept C45262634 @default.
- W4205447000 hasConcept C58166 @default.
- W4205447000 hasConcept C78519656 @default.
- W4205447000 hasConceptScore W4205447000C103742991 @default.
- W4205447000 hasConceptScore W4205447000C105795698 @default.
- W4205447000 hasConceptScore W4205447000C127413603 @default.
- W4205447000 hasConceptScore W4205447000C154945302 @default.
- W4205447000 hasConceptScore W4205447000C171146098 @default.
- W4205447000 hasConceptScore W4205447000C178802073 @default.
- W4205447000 hasConceptScore W4205447000C195975749 @default.
- W4205447000 hasConceptScore W4205447000C2775924081 @default.
- W4205447000 hasConceptScore W4205447000C33923547 @default.
- W4205447000 hasConceptScore W4205447000C39432304 @default.
- W4205447000 hasConceptScore W4205447000C41008148 @default.
- W4205447000 hasConceptScore W4205447000C42475967 @default.
- W4205447000 hasConceptScore W4205447000C45262634 @default.
- W4205447000 hasConceptScore W4205447000C58166 @default.
- W4205447000 hasConceptScore W4205447000C78519656 @default.
- W4205447000 hasFunder F4320321001 @default.
- W4205447000 hasFunder F4320335777 @default.
- W4205447000 hasLocation W42054470001 @default.
- W4205447000 hasOpenAccess W4205447000 @default.
- W4205447000 hasPrimaryLocation W42054470001 @default.
- W4205447000 hasRelatedWork W2077971767 @default.
- W4205447000 hasRelatedWork W2148972018 @default.
- W4205447000 hasRelatedWork W2367706718 @default.
- W4205447000 hasRelatedWork W2386627086 @default.
- W4205447000 hasRelatedWork W2607453631 @default.
- W4205447000 hasRelatedWork W2609941614 @default.
- W4205447000 hasRelatedWork W2899084033 @default.
- W4205447000 hasRelatedWork W4308120855 @default.
- W4205447000 hasRelatedWork W4321378302 @default.
- W4205447000 hasRelatedWork W3127822592 @default.
- W4205447000 hasVolume "49" @default.
- W4205447000 isParatext "false" @default.
- W4205447000 isRetracted "false" @default.