Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205448935> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4205448935 abstract "Abstract Background There are often many missing values in medical data, which directly affect the accuracy of clinical decision making. Discharge assessment is an important part of clinical decision making. Taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example, this study adopted the missing data processing evaluation criteria more suitable for clinical decision making, aiming at systematically exploring the performance and applicability of single machine learning algorithms and ensemble learning (EL) under different data missing scenarios, as well as whether they had more advantages than traditional methods, so as to provide basis and reference for the selection of suitable missing data processing method in practical clinical decision making. Methods The whole process consisted of four main steps: (1) Based on the original complete data set, missing data was generated by simulation under different missing scenarios (missing mechanisms, missing proportions and ratios of missing proportions of each group). (2) Machine learning and traditional methods (eight methods in total) were applied to impute missing values. (3) The performances of imputation techniques were evaluated and compared by estimating the sensitivity, AUC and Kappa values of prediction models. (4) Statistical tests were used to evaluate whether the observed performance differences were statistically significant. Results The performances of missing data processing methods were different to a certain extent in different missing scenarios. On the whole, machine learning had better imputation performance than traditional methods, especially in scenarios with high missing proportions. Compared with single machine learning algorithms, the performance of EL was more prominent, followed by neural networks. Meanwhile, EL was most suitable for missing imputation under MAR (the ratio of missing proportion 2:1) mechanism, and its average sensitivity, AUC and Kappa values reached 0.908, 0.924 and 0.596 respectively. Conclusions In clinical decision making, the characteristics of missing data should be actively explored before formulating missing data processing strategies. The outstanding imputation performance of machine learning methods, especially EL, shed light on the development of missing data processing technology, and provided methodological support for clinical decision making in presence of incomplete data." @default.
- W4205448935 created "2022-01-26" @default.
- W4205448935 creator A5022318921 @default.
- W4205448935 creator A5024792434 @default.
- W4205448935 creator A5034170351 @default.
- W4205448935 creator A5035701638 @default.
- W4205448935 creator A5057723713 @default.
- W4205448935 date "2022-01-13" @default.
- W4205448935 modified "2023-10-17" @default.
- W4205448935 title "Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example" @default.
- W4205448935 cites W1498436455 @default.
- W4205448935 cites W1866068290 @default.
- W4205448935 cites W2023161567 @default.
- W4205448935 cites W2100358124 @default.
- W4205448935 cites W2112161237 @default.
- W4205448935 cites W2113559481 @default.
- W4205448935 cites W2122111042 @default.
- W4205448935 cites W2136587148 @default.
- W4205448935 cites W2155070090 @default.
- W4205448935 cites W2209358119 @default.
- W4205448935 cites W2391474792 @default.
- W4205448935 cites W2477714251 @default.
- W4205448935 cites W2504719549 @default.
- W4205448935 cites W2582428523 @default.
- W4205448935 cites W2582537153 @default.
- W4205448935 cites W2590071527 @default.
- W4205448935 cites W262589743 @default.
- W4205448935 cites W28412257 @default.
- W4205448935 cites W2895676484 @default.
- W4205448935 cites W2911964244 @default.
- W4205448935 cites W2914368780 @default.
- W4205448935 cites W3012758580 @default.
- W4205448935 cites W3015067555 @default.
- W4205448935 cites W3195642814 @default.
- W4205448935 cites W3212000620 @default.
- W4205448935 cites W4299689471 @default.
- W4205448935 doi "https://doi.org/10.1186/s12911-022-01752-6" @default.
- W4205448935 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35027065" @default.
- W4205448935 hasPublicationYear "2022" @default.
- W4205448935 type Work @default.
- W4205448935 citedByCount "11" @default.
- W4205448935 countsByYear W42054489352022 @default.
- W4205448935 countsByYear W42054489352023 @default.
- W4205448935 crossrefType "journal-article" @default.
- W4205448935 hasAuthorship W4205448935A5022318921 @default.
- W4205448935 hasAuthorship W4205448935A5024792434 @default.
- W4205448935 hasAuthorship W4205448935A5034170351 @default.
- W4205448935 hasAuthorship W4205448935A5035701638 @default.
- W4205448935 hasAuthorship W4205448935A5057723713 @default.
- W4205448935 hasBestOaLocation W42054489351 @default.
- W4205448935 hasConcept C119857082 @default.
- W4205448935 hasConcept C124101348 @default.
- W4205448935 hasConcept C154945302 @default.
- W4205448935 hasConcept C41008148 @default.
- W4205448935 hasConcept C45942800 @default.
- W4205448935 hasConcept C58041806 @default.
- W4205448935 hasConcept C9357733 @default.
- W4205448935 hasConceptScore W4205448935C119857082 @default.
- W4205448935 hasConceptScore W4205448935C124101348 @default.
- W4205448935 hasConceptScore W4205448935C154945302 @default.
- W4205448935 hasConceptScore W4205448935C41008148 @default.
- W4205448935 hasConceptScore W4205448935C45942800 @default.
- W4205448935 hasConceptScore W4205448935C58041806 @default.
- W4205448935 hasConceptScore W4205448935C9357733 @default.
- W4205448935 hasFunder F4320321001 @default.
- W4205448935 hasFunder F4320322990 @default.
- W4205448935 hasFunder F4320330773 @default.
- W4205448935 hasFunder F4320333335 @default.
- W4205448935 hasIssue "1" @default.
- W4205448935 hasLocation W42054489351 @default.
- W4205448935 hasLocation W42054489352 @default.
- W4205448935 hasLocation W42054489353 @default.
- W4205448935 hasLocation W42054489354 @default.
- W4205448935 hasOpenAccess W4205448935 @default.
- W4205448935 hasPrimaryLocation W42054489351 @default.
- W4205448935 hasRelatedWork W1513289763 @default.
- W4205448935 hasRelatedWork W1973721774 @default.
- W4205448935 hasRelatedWork W2316243772 @default.
- W4205448935 hasRelatedWork W2541565311 @default.
- W4205448935 hasRelatedWork W2751555317 @default.
- W4205448935 hasRelatedWork W2784019465 @default.
- W4205448935 hasRelatedWork W2900766238 @default.
- W4205448935 hasRelatedWork W3049453136 @default.
- W4205448935 hasRelatedWork W569810835 @default.
- W4205448935 hasRelatedWork W2112497756 @default.
- W4205448935 hasVolume "22" @default.
- W4205448935 isParatext "false" @default.
- W4205448935 isRetracted "false" @default.
- W4205448935 workType "article" @default.