Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205454937> ?p ?o ?g. }
- W4205454937 endingPage "50" @default.
- W4205454937 startingPage "50" @default.
- W4205454937 abstract "The UN 2030 Agenda sets poverty eradication as the primary goal of sustainable development. An accurate measurement of poverty is a critical input to the quality and efficiency of poverty alleviation in rural areas. However, poverty, as a geographical phenomenon, inevitably has a spatial correlation. Neglecting the spatial correlation between areas in poverty measurements will hamper efforts to improve the accuracy of poverty identification and to design policies in truly poor areas. To capture this spatial correlation, this paper proposes a new poverty measurement model based on a neural network, namely, the spatial vector deep neural network (SVDNN), which combines the spatial vector neural network model (SVNN) and the deep neural network (DNN). The SVNN was applied to measure spatial correlation, while the DNN used the SVNN output vector and explanatory variables dataset to measure the multidimensional poverty index (MPI). To determine the optimal spatial correlation structure of SVDNN, this paper compares the model performance of the spatial distance matrix, spatial adjacent matrix and spatial weighted adjacent matrix, selecting the optimal performing spatial distance matrix as the input data set of SVNN. Then, the SVDNN model was used for the MPI measurement of the Yangtze River Economic Belt, after which the results were compared with three baseline models of DNN, the back propagation neural network (BPNN), and artificial neural network (ANN). Experiments demonstrate that the SVDNN model can obtain spatial correlation from the spatial distance dataset between counties and its poverty identification accuracy is better than other baseline models. The spatio-temporal characteristics of MPI measured by SVDNN were also highly consistent with the distribution of urban aggregations and national-level poverty counties in the Yangtze River Economic Belt. The SVDNN model proposed in this paper could effectively improve the accuracy of poverty identification, thus reducing the misallocation of resources in tracking and targeting poverty in developing countries." @default.
- W4205454937 created "2022-01-26" @default.
- W4205454937 creator A5023381682 @default.
- W4205454937 creator A5042522255 @default.
- W4205454937 creator A5077000036 @default.
- W4205454937 date "2022-01-10" @default.
- W4205454937 modified "2023-10-14" @default.
- W4205454937 title "A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China" @default.
- W4205454937 cites W1968867482 @default.
- W4205454937 cites W1968966047 @default.
- W4205454937 cites W1973749534 @default.
- W4205454937 cites W1974441291 @default.
- W4205454937 cites W1998781994 @default.
- W4205454937 cites W2014207611 @default.
- W4205454937 cites W2024272180 @default.
- W4205454937 cites W2025258580 @default.
- W4205454937 cites W2026933365 @default.
- W4205454937 cites W2066630636 @default.
- W4205454937 cites W2107896735 @default.
- W4205454937 cites W2129814907 @default.
- W4205454937 cites W2146364863 @default.
- W4205454937 cites W2148475282 @default.
- W4205454937 cites W2148482412 @default.
- W4205454937 cites W2151454621 @default.
- W4205454937 cites W2154537248 @default.
- W4205454937 cites W2160815625 @default.
- W4205454937 cites W2169223645 @default.
- W4205454937 cites W2172422511 @default.
- W4205454937 cites W2173315138 @default.
- W4205454937 cites W2175970197 @default.
- W4205454937 cites W2291905302 @default.
- W4205454937 cites W2434494932 @default.
- W4205454937 cites W2466332434 @default.
- W4205454937 cites W2513506629 @default.
- W4205454937 cites W2576809816 @default.
- W4205454937 cites W2599875878 @default.
- W4205454937 cites W2604339857 @default.
- W4205454937 cites W2605501375 @default.
- W4205454937 cites W2610454547 @default.
- W4205454937 cites W2768062239 @default.
- W4205454937 cites W2781856787 @default.
- W4205454937 cites W2782825068 @default.
- W4205454937 cites W2782901556 @default.
- W4205454937 cites W2786338013 @default.
- W4205454937 cites W2792964958 @default.
- W4205454937 cites W2879950287 @default.
- W4205454937 cites W2888150100 @default.
- W4205454937 cites W2889294691 @default.
- W4205454937 cites W2901504064 @default.
- W4205454937 cites W2915971115 @default.
- W4205454937 cites W2939443537 @default.
- W4205454937 cites W2944480161 @default.
- W4205454937 cites W2973697613 @default.
- W4205454937 cites W3003825061 @default.
- W4205454937 cites W3014673353 @default.
- W4205454937 cites W3021556882 @default.
- W4205454937 cites W3032323787 @default.
- W4205454937 cites W3033155576 @default.
- W4205454937 cites W3035845777 @default.
- W4205454937 cites W3035875842 @default.
- W4205454937 cites W3037987550 @default.
- W4205454937 cites W3047558733 @default.
- W4205454937 cites W3061677303 @default.
- W4205454937 cites W3114415978 @default.
- W4205454937 cites W3120577481 @default.
- W4205454937 cites W3121689684 @default.
- W4205454937 cites W3123267936 @default.
- W4205454937 cites W3124062417 @default.
- W4205454937 cites W3124915449 @default.
- W4205454937 cites W3128861468 @default.
- W4205454937 cites W3159421814 @default.
- W4205454937 cites W3043874634 @default.
- W4205454937 doi "https://doi.org/10.3390/ijgi11010050" @default.
- W4205454937 hasPublicationYear "2022" @default.
- W4205454937 type Work @default.
- W4205454937 citedByCount "3" @default.
- W4205454937 countsByYear W42054549372022 @default.
- W4205454937 countsByYear W42054549372023 @default.
- W4205454937 crossrefType "journal-article" @default.
- W4205454937 hasAuthorship W4205454937A5023381682 @default.
- W4205454937 hasAuthorship W4205454937A5042522255 @default.
- W4205454937 hasAuthorship W4205454937A5077000036 @default.
- W4205454937 hasBestOaLocation W42054549371 @default.
- W4205454937 hasConcept C105795698 @default.
- W4205454937 hasConcept C116834253 @default.
- W4205454937 hasConcept C117220453 @default.
- W4205454937 hasConcept C124101348 @default.
- W4205454937 hasConcept C149782125 @default.
- W4205454937 hasConcept C150060386 @default.
- W4205454937 hasConcept C154945302 @default.
- W4205454937 hasConcept C159620131 @default.
- W4205454937 hasConcept C162324750 @default.
- W4205454937 hasConcept C189326681 @default.
- W4205454937 hasConcept C205649164 @default.
- W4205454937 hasConcept C2524010 @default.
- W4205454937 hasConcept C33923547 @default.
- W4205454937 hasConcept C41008148 @default.
- W4205454937 hasConcept C50522688 @default.