Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205460596> ?p ?o ?g. }
- W4205460596 endingPage "105812" @default.
- W4205460596 startingPage "105812" @default.
- W4205460596 abstract "Estimating the marginal abatement cost (MAC) of CO2 emission is critical in formulating emission reduction targets and policies. Existing studies rarely emphasized the impact of random noise on MAC estimation, and downscaling the production activity is conventionally applied as the only measure for emission abatement while the possibilities of other measures, such as increase the investment, are often neglected. This paper estimates the least MAC of CO2 for Chinese iron and steel enterprises using a stochastic semi-nonparametric method which considers both inefficiency and random noise. Multiple measures including downscaling the production activity and increasing the inputs investment, are all considered for identifying the least-cost measure for reducing emissions. In addition, the strategies corresponding to adjustment on production and response to environmental regulation of each enterprise are included in the estimation, which makes it possible for identifying the upper and lower bound of MACs. Empirical results indicate that i) the stochastic semi-nonparametric method provides a more consistent estimates with the production process, ii) the average MAC of CO2 emissions in China's iron and steel industry ranges from 2.07 to 2395 yuan/ton, and iii) increasing labor is identified as the least-cost abatement measures for most of the iron and steel enterprises listed in China's top 500 enterprise. Policy implications have been put forward to reduce the carbon abatement cost in China's iron and steel industry." @default.
- W4205460596 created "2022-01-25" @default.
- W4205460596 creator A5003232376 @default.
- W4205460596 creator A5041007255 @default.
- W4205460596 creator A5056300354 @default.
- W4205460596 creator A5061293120 @default.
- W4205460596 creator A5082075857 @default.
- W4205460596 date "2022-02-01" @default.
- W4205460596 modified "2023-10-06" @default.
- W4205460596 title "Capturing the least costly measure of CO2 emission abatement: Evidence from the iron and steel industry in China" @default.
- W4205460596 cites W1532189092 @default.
- W4205460596 cites W1588591676 @default.
- W4205460596 cites W1990505854 @default.
- W4205460596 cites W1991796648 @default.
- W4205460596 cites W2001335634 @default.
- W4205460596 cites W2006650766 @default.
- W4205460596 cites W2019023170 @default.
- W4205460596 cites W2033834012 @default.
- W4205460596 cites W2038756594 @default.
- W4205460596 cites W2043425503 @default.
- W4205460596 cites W2050901796 @default.
- W4205460596 cites W2063430891 @default.
- W4205460596 cites W2066393364 @default.
- W4205460596 cites W2067160548 @default.
- W4205460596 cites W2076452041 @default.
- W4205460596 cites W2079278958 @default.
- W4205460596 cites W2079313454 @default.
- W4205460596 cites W2081190680 @default.
- W4205460596 cites W2081942997 @default.
- W4205460596 cites W2085093326 @default.
- W4205460596 cites W2091520404 @default.
- W4205460596 cites W2106759263 @default.
- W4205460596 cites W2144929536 @default.
- W4205460596 cites W2156161264 @default.
- W4205460596 cites W2157098711 @default.
- W4205460596 cites W2605512167 @default.
- W4205460596 cites W2689503534 @default.
- W4205460596 cites W2753017178 @default.
- W4205460596 cites W2808872351 @default.
- W4205460596 cites W2897489879 @default.
- W4205460596 cites W2901193660 @default.
- W4205460596 cites W2968941657 @default.
- W4205460596 cites W2999239390 @default.
- W4205460596 cites W3005377050 @default.
- W4205460596 cites W3005636564 @default.
- W4205460596 cites W3040435177 @default.
- W4205460596 cites W3045029172 @default.
- W4205460596 cites W3077104372 @default.
- W4205460596 cites W3083139150 @default.
- W4205460596 cites W3112864787 @default.
- W4205460596 cites W3121991191 @default.
- W4205460596 cites W4238884352 @default.
- W4205460596 cites W4376453396 @default.
- W4205460596 doi "https://doi.org/10.1016/j.eneco.2022.105812" @default.
- W4205460596 hasPublicationYear "2022" @default.
- W4205460596 type Work @default.
- W4205460596 citedByCount "18" @default.
- W4205460596 countsByYear W42054605962022 @default.
- W4205460596 countsByYear W42054605962023 @default.
- W4205460596 crossrefType "journal-article" @default.
- W4205460596 hasAuthorship W4205460596A5003232376 @default.
- W4205460596 hasAuthorship W4205460596A5041007255 @default.
- W4205460596 hasAuthorship W4205460596A5056300354 @default.
- W4205460596 hasAuthorship W4205460596A5061293120 @default.
- W4205460596 hasAuthorship W4205460596A5082075857 @default.
- W4205460596 hasConcept C102366305 @default.
- W4205460596 hasConcept C132651083 @default.
- W4205460596 hasConcept C134560507 @default.
- W4205460596 hasConcept C149782125 @default.
- W4205460596 hasConcept C162324750 @default.
- W4205460596 hasConcept C175444787 @default.
- W4205460596 hasConcept C175605778 @default.
- W4205460596 hasConcept C17744445 @default.
- W4205460596 hasConcept C187736073 @default.
- W4205460596 hasConcept C18903297 @default.
- W4205460596 hasConcept C191935318 @default.
- W4205460596 hasConcept C199539241 @default.
- W4205460596 hasConcept C27548731 @default.
- W4205460596 hasConcept C2776780212 @default.
- W4205460596 hasConcept C2778348673 @default.
- W4205460596 hasConcept C2778869765 @default.
- W4205460596 hasConcept C2780009758 @default.
- W4205460596 hasConcept C39432304 @default.
- W4205460596 hasConcept C41008148 @default.
- W4205460596 hasConcept C41156917 @default.
- W4205460596 hasConcept C47737302 @default.
- W4205460596 hasConcept C77088390 @default.
- W4205460596 hasConcept C86803240 @default.
- W4205460596 hasConcept C94625758 @default.
- W4205460596 hasConcept C96250715 @default.
- W4205460596 hasConceptScore W4205460596C102366305 @default.
- W4205460596 hasConceptScore W4205460596C132651083 @default.
- W4205460596 hasConceptScore W4205460596C134560507 @default.
- W4205460596 hasConceptScore W4205460596C149782125 @default.
- W4205460596 hasConceptScore W4205460596C162324750 @default.
- W4205460596 hasConceptScore W4205460596C175444787 @default.
- W4205460596 hasConceptScore W4205460596C175605778 @default.
- W4205460596 hasConceptScore W4205460596C17744445 @default.